98 research outputs found

    Friction on a single MoS2 nanotube

    Get PDF
    Friction was measured on a single molybdenum disulfide (MoS2) nanotube and on a single MoS2 nano-onion for the first time. We used atomic force microscopy (AFM) operating in ultra-high vacuum at room temperature. The average coefficient of friction between the AFM tip and MoS2 nanotubes was found considerably below the corresponding values obtained from an air-cleaved MoS2 single crystal or graphite. We revealed a nontrivial dependency of friction on interaction strength between the nanotube and the underlying substrate. Friction on detached or weakly supported nanotubes by the substrate was several times smaller (0.023 ± 0.005) than that on well-supported nanotubes (0.08 ± 0.02). We propose an explanation of a quarter of a century old phenomena of higher friction found for intracrystalline (0.06) than for intercrystalline slip (0.025) in MoS2. Friction test on a single MoS2 nano-onion revealed a combined gliding-rolling process

    Ribosome formation from subunits studied by stopped-flow and Rayleigh light scattering

    Get PDF
    Light scattering and standard stopped-flow techniques were used to monitor rapid association of ribosomal subunits during initiation of eubacterial protein synthesis. The effects of the initiation factors IF1, IF2, IF3 and buffer conditions on subunit association were studied along with the role of GTP in this process. The part of light scattering theory that is essential for kinetic measurements is high-lighted in the main text and a more general treatment of Rayleigh scattering from macromolecules is given in an appendix

    Isolation of Bacterial Ribosomes with Monolith Chromatography

    Get PDF
    We report the development of a rapid chromatographic method for the isolation of bacterial ribosomes from crude cell lysates in less than ten minutes. Our separation is based on the use of strong anion exchange monolithic columns. Using a simple stepwise elution program we were able to purify ribosomes whose composition is comparable to those isolated by sucrose gradient ultracentrifugation, as confirmed by quantitative proteomic analysis (iTRAQ). The speed and simplicity of this approach could accelerate the study of many different aspects of ribosomal biology

    Feasibility and repeatability of localized 3^31^1P-MRS four-angle saturation transfer (FAST) of the human gastrocnemius muscle using a surface coil at 7 T

    No full text
    Phosphorus (31P) MRS, combined with saturation transfer (ST), provides non-invasive insight into muscle energy metabolism. However, even at 7 T, the standard ST method with T1app measured by inversion recovery takes about 10 min, making it impractical for dynamic examinations. An alternative method, i.e. four-angle saturation transfer (FAST), can shorten the examination time. The aim of this study was to test the feasibility, repeatability, and possible time resolution of the localized FAST technique measurement on an ultra-high-field MR system, to accelerate the measurement of both Pi-to-ATP and PCr-to-ATP reaction rates in the human gastrocnemius muscle and to test the feasibility of using the FAST method for dynamic measurements. We measured the exchange rates and metabolic fluxes in the gastrocnemius muscle of eight healthy subjects at 7 T with the depth-resolved surface coil MRS (DRESS)-localized FAST method. For comparison, a standard ST localized method was also used. The measurement time for the localized FAST experiment was 3.5 min compared with the 10 min for the standard localized ST experiment. In addition, in five healthy volunteers, Pi-to-ATP and PCr-to-ATP metabolic fluxes were measured in the gastrocnemius muscle at rest and during plantar flexion by the DRESS-localized FAST method. The repeatability of PCr-to-ATP and Pi-to-ATP exchange rate constants, determined by the slab-selective localized FAST method at 7 T, is high, as the coefficients of variation remained below 20%, and the results of the exchange rates measured with the FAST method are comparable to those measured with standard ST. During physical activity, the PCr-to-ATP metabolic flux decreased (from FCK = 8.21 ± 1.15 mM s−1 to FCK = 3.86 ± 1.38 mM s−1) and the Pi-to-ATP flux increased (from FATP = 0.43 ± 0.14 mM s−1 to FATP = 0.74 ± 0.13 mM s−1). In conclusion, we could demonstrate that measurements in the gastrocnemius muscle are feasible at rest and are short enough to be used during exercise with the DRESS-localized FAST method at 7 T.</p

    Kolorektales Karzinom in Slowenien um die Jahrhundertwende

    No full text

    Multinuclear MRS at 7T uncovers exercise driven differences in skeletal muscle energy metabolism between young and seniors

    No full text
    Purpose:&nbsp;Aging is associated with changes in muscle energy metabolism. Proton (1H) and phosphorous (31P) magnetic resonance spectroscopy (MRS) has been successfully applied for non-invasive investigation of skeletal muscle metabolism. The aim of this study was to detect differences in adenosine triphosphate (ATP) production in the aging muscle by&nbsp;31P-MRS and to identify potential changes associated with buffer capacity of muscle carnosine by&nbsp;1H-MRS. Methods:&nbsp;Fifteen young and nineteen elderly volunteers were examined.&nbsp;1H and&nbsp;31P-MRS spectra were acquired at high field (7T). The investigation included carnosine quantification using&nbsp;1H-MRS and resting and dynamic&nbsp;31P-MRS, both including saturation transfer measurements of phosphocreatine (PCr), and inorganic phosphate (Pi)-to-ATP metabolic fluxes. Results:&nbsp;Elderly volunteers had higher time constant of PCr recovery (&tau;PCr) in comparison to the young volunteers. Exercise was connected with significant decrease in PCr-to-ATP flux in both groups. Moreover, PCr-to-ATP flux was significantly higher in young compared to elderly both at rest and during exercise. Similarly, an increment of Pi-to-ATP flux with exercise was found in both groups but the intergroup difference was only observed during exercise. Elderly had lower muscle carnosine concentration and lower postexercise pH. A strong increase in phosphomonoester (PME) concentration was observed with exercise in elderly, and a faster Pi:PCr kinetics was found in young volunteers compared to elderly during the recovery period. Conclusion:&nbsp;Observations of a massive increment of PME concentration together with high Pi-to-ATP flux during exercise in seniors refer to decreased ability of the muscle to meet the metabolic requirements of exercise and thus a limited ability of seniors to effectively support the exercise load.</p
    corecore