65 research outputs found

    NCL Implementation of Dual-Rail 2\u3csup\u3eS\u3c/sup\u3e Complement 8x8 Booth2 Multiplier using Static and Semi-Static Primitives

    Get PDF
    In this work, we use static and semi-static versions of NULL Convention Logic (NCL) primitives (i.e., threshold gates) to implement a dual-rail 8times8 2s complement multiplier using the Modified Booth2 algorithm for partial product generation and a Wallace tree for partial product summation. We establish the multiplier\u27s functionality utilizing VHDL-based simulations of the gate-level structural design. The design is then implemented at the transistor-level and layout-level using both static and semi-static threshold gates, for a 1.8V 0.18mum TSMC CMOS process; and these two implementations are compared in terms of area, power, and speed

    Physiological and Proteomic Signatures Reveal Mechanisms of Superior Drought Resilience in Pearl Millet Compared to Wheat

    Get PDF
    Presently, pearl millet and wheat are belonging to highly important cereal crops. Pearl millet, however, is an under-utilized crop, despite its superior resilience to drought and heat stress in contrast to wheat. To investigate this in more detail, we performed comparative physiological screening and large scale proteomics of drought stress responses in drought-tolerant and susceptible genotypes of pearl millet and wheat. These chosen genotypes are widely used in breeding and farming practices. The physiological responses demonstrated large differences in the regulation of root morphology and photosynthetic machinery, revealing a stay-green phenotype in pearl millet. Subsequent tissue-specific proteome analysis of leaves, roots and seeds led to the identification of 12,558 proteins in pearl millet and wheat under well-watered and stress conditions. To allow for this comparative proteome analysis and to provide a platform for future functional proteomics studies we performed a systematic phylogenetic analysis of all orthologues in pearl millet, wheat, foxtail millet, sorghum, barley, brachypodium, rice, maize, Arabidopsis, and soybean. In summary, we define (i) a stay-green proteome signature in the drought-tolerant pearl millet phenotype and (ii) differential senescence proteome signatures in contrasting wheat phenotypes not capable of coping with similar drought stress. These different responses have a significant effect on yield and grain filling processes reflected by the harvest index. Proteome signatures related to root morphology and seed yield demonstrated the unexpected intra- and interspecies-specific biochemical plasticity for stress adaptatio

    GBS-based SNP map pinpoints the QTL associated with sorghum downy mildew resistance in maize (Zea mays L.)

    Get PDF
    Sorghum downy mildew (SDM), caused by the biotrophic fungi Peronosclerospora sorghi, threatens maize production worldwide, including India. To identify quantitative trait loci (QTL) associated with resistance to SDM, we used a recombinant inbred line (RIL) population derived from a cross between resistant inbred line UMI936 (w) and susceptible inbred line UMI79. The RIL population was phenotyped for SDM resistance in three environments [E1-field (Coimbatore), E2-greenhouse (Coimbatore), and E3-field (Mandya)] and also utilized to construct the genetic linkage map by genotyping by sequencing (GBS) approach. The map comprises 1516 SNP markers in 10 linkage groups (LGs) with a total length of 6924.7 cM and an average marker distance of 4.57 cM. The QTL analysis with the phenotype and marker data detected nine QTL on chromosome 1, 2, 3, 5, 6, and 7 across three environments. Of these, QTL namely qDMR1.2, qDMR3.1, qDMR5.1, and qDMR6.1 were notable due to their high phenotypic variance. qDMR3.1 from chromosome 3 was detected in more than one environment (E1 and E2), explaining the 10.3% and 13.1% phenotypic variance. Three QTL, qDMR1.2, qDMR5.1, and qDMR6.1 from chromosomes 1, 5, and 6 were identified in either E1 or E3, explaining 15.2%–18% phenotypic variance. Moreover, genome mining on three QTL (qDMR3.1, qDMR5.1, and qDMR6.1) reveals the putative candidate genes related to SDM resistance. The information generated in this study will be helpful for map-based cloning and marker-assisted selection in maize breeding programs

    A study on the inductive power links for implantable biomedical devices

    No full text
    10.1109/APS.2010.55621222010 IEEE International Symposium on Antennas and Propagation and CNC-USNC/URSI Radio Science Meeting - Leading the Wave, AP-S/URSI 2010

    Analysis of inductive power link for efficient wireless power transfer

    No full text
    10.1109/HSIC.2012.62130102012 4th International High Speed Intelligent Communication Forum, HSIC 2012, Proceeding59-6

    Efficient inductive power transfer for biomedical applications

    No full text
    10.1109/iWEM.2012.63203342012 IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition, iWEM 2012

    Evaluation and optimization of high frequency wireless power links

    No full text
    10.1109/APS.2011.5996728IEEE Antennas and Propagation Society, AP-S International Symposium (Digest)400-403IAPS
    corecore