21 research outputs found
Longitudinal Evaluation of the Hypothalamic-Pituitary-Testicular Function in 8 Boys with Adrenal Hypoplasia Congenita (AHC) Due to NR0B1 Mutations
BACKGROUND:Boys carrying mutations in the NR0B1 gene develop adrenal hypoplasia congenita (AHC) and impaired sexual development due to the combination of hypogonadotropic hypogonadism (HH) and primary defects in spermatogenesis. METHODS:We analysed the evolution of hypothalamic-pituitary-testicular function of 8 boys with AHC due to NR0B1 mutations. Our objective was to characterize and monitor the progressive deterioration of this function. RESULTS:The first symptoms appeared in the neonatal period (n = 5) or between 6 months and 8.7 years (n = 3). Basal plasma adrenocorticotrophic hormone (ACTH) concentrations increased in all boys, whilst cortisol levels decreased in one case. The natremia was equal or below 134 mmol/L and kaliemia was over 5 mmol/L. All had increased plasma renin. In 3 of 4 patients diagnosed in the neonatal period and evaluated during the first year, the basal plasma gonadotropins concentrations, and their response to gonadotropin releasing hormone (GnRH) test (n = 2), and those of testosterone were normal. The plasma inhibin B levels were normal in the first year of life. With the exception of two cases these concentrations decreased to below the normal for age. Anti-Müllerian hormone concentrations were normal for age in all except one case, which had low concentrations before the initiation of testosterone treatment. In 3 of the 8 cases the gene was deleted and the remaining 5 cases carried frameshift mutations that are predicted to introduce a downstream nonsense mutation resulting in a truncated protein. CONCLUSIONS:The decreases in testosterone and inhibin B levels indicated a progressive loss of testicular function in boys carrying NR0B1 mutations. These non-invasive examinations can help to estimate the age of the testicular degradation and cryopreservation of semen may be considered in these cases as investigational procedure with the aim of restoring fertility
Dimethyl fumarate in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial
Dimethyl fumarate (DMF) inhibits inflammasome-mediated inflammation and has been proposed as a treatment for patients hospitalised with COVID-19. This randomised, controlled, open-label platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing multiple treatments in patients hospitalised for COVID-19 (NCT04381936, ISRCTN50189673). In this assessment of DMF performed at 27 UK hospitals, adults were randomly allocated (1:1) to either usual standard of care alone or usual standard of care plus DMF. The primary outcome was clinical status on day 5 measured on a seven-point ordinal scale. Secondary outcomes were time to sustained improvement in clinical status, time to discharge, day 5 peripheral blood oxygenation, day 5 C-reactive protein, and improvement in day 10 clinical status. Between 2 March 2021 and 18 November 2021, 713 patients were enroled in the DMF evaluation, of whom 356 were randomly allocated to receive usual care plus DMF, and 357 to usual care alone. 95% of patients received corticosteroids as part of routine care. There was no evidence of a beneficial effect of DMF on clinical status at day 5 (common odds ratio of unfavourable outcome 1.12; 95% CI 0.86-1.47; p = 0.40). There was no significant effect of DMF on any secondary outcome
Optimization of two-dimensional NMR by matched accumulation
It is well known that in the time-domain acquisition of NMR data, signal-to-noise (S/N) improves as the square root of the number of transients accumulated. However, the amplitude of the measured signal varies during the time of detection, having a functional form dependent on the coherence detected. Matching the time spent signal averaging to the expected amplitude of the signal observed should also improve the detected signal-to-noise. Following this reasoning, Barna et al. (J Magn. Reson.75, 384, 1987) demonstrated the utility of exponential sampling in one- and two-dimensional NMR, using maximum-entropy methods to analyze the data. It is proposed here that for two-dimensional experiments the exponential sampling be replaced by exponential averaging. The data thus collected can be analyzed by standard fast-Fourier-transform routines. We demonstrate the utility of exponential averaging in 2D NOESY spectra of the protein ubiquitin, in which an enhanced SIN is observed. It is also shown that the method acquires delayed double-quantum-filtered COSY without phase distortion