155 research outputs found

    Complex I dysfunction underlies the glycolytic switch in pulmonary hypertensive smooth muscle cells.

    Get PDF
    ATP is essential for cellular function and is usually produced through oxidative phosphorylation. However, mitochondrial dysfunction is now being recognized as an important contributing factor in the development cardiovascular diseases, such as pulmonary hypertension (PH). In PH there is a metabolic change from oxidative phosphorylation to mainly glycolysis for energy production. However, the mechanisms underlying this glycolytic switch are only poorly understood. In particular the role of the respiratory Complexes in the mitochondrial dysfunction associated with PH is unresolved and was the focus of our investigations. We report that smooth muscle cells isolated from the pulmonary vessels of rats with PH (PH-PASMC), induced by a single injection of monocrotaline, have attenuated mitochondrial function and enhanced glycolysis. Further, utilizing a novel live cell assay, we were able to demonstrate that the mitochondrial dysfunction in PH-PASMC correlates with deficiencies in the activities of Complexes I-III. Further, we observed that there was an increase in mitochondrial reactive oxygen species generation and mitochondrial membrane potential in the PASMC isolated from rats with PH. We further found that the defect in Complex I activity was due to a loss of Complex I assembly, although the assembly of Complexes II and III were both maintained. Thus, we conclude that loss of Complex I assembly may be involved in the switch of energy metabolism in smooth muscle cells to glycolysis and that maintaining Complex I activity may be a potential therapeutic target for the treatment of PH

    Hemodynamic Effects of Epinephrine, Bicarbonate and Calcium in the Early Postnatal Period in a Lamb Model of Single-Ventricle Physiology Created In Utero

    Get PDF
    ObjectivesA reproducible fetal animal model of single-ventricle physiology was created to examine the effects of pharmacologic agents commonly used in the perinatal and perioperative intensive care management of patients with a single ventricle.BackgroundSingle-ventricle physiology is characterized by parallel pulmonary and systemic circulations, with effective blood flow to each determined by the relative resistances in the pulmonary and systemic vascular beds. Perinatal and perioperative management of these patients is largely based on empiric observations and differs considerably between institutions and is further complicated by the transitional physiology of the newborn. The lack of animal models of single-ventricle physiology has hindered the understanding of this problem.MethodsA 10-mm, Damus-Kaye-Stansel-type aortopulmonary anastomosis was created in 10 fetal sheep at 140±1.2 days of gestation. The main pulmonary artery was ligated distally, and pulmonary blood flow (Qp) was provided through a 5-mm aortopulmonary shunt. Eight lambs were delivered at term and placed on cardiopulmonary bypass (30 min) 48 to 72h after birth. Pharmacologic interventions (0.1Mg/kg body weight per min of epinephrine, 2mEq/kg of sodium bicarbonate and 10mg/kg of calcium chloride) were performed before and after bypass, and hemodynamic responses were observed. The response to the epinephrine bolus was determined only in the postbypass study.ResultsBoth before and after bypass, epinephrine infusion and calcium and bicarbonate administration increased Qp and systemic blood flow (Qs) (total cardiac output) but produced only small changes in the Qp/Qs ratio (-0.5% to -7.3% change). With the epinephrine bolus, Qp increased enormously, and the Qp/Qs ratio increased by 584% (p < 0.001).ConclusionsIn neonatal lambs with single-ventricle physiology created in utero, epinephrine infusion and calcium and bicarbonate administration increased total cardiac output without significantly compromising the Qp/Qs ratio. However, epinephrine bolus seems to be hemodynamically detrimental in circumstances of single-ventricle physiology and should be used with caution and probably in relatively lower doses in the resuscitation of patients with single-ventricle physiology. Further investigation of the dose-dependent effects and the effects of prolonged administration of common pharmacologic agents will enable better management of patients with single-ventricle physiology

    Metabolic Changes Precede the Development of Pulmonary Hypertension in the Monocrotaline Exposed Rat Lung.

    Get PDF
    There is increasing interest in the potential for metabolic profiling to evaluate the progression of pulmonary hypertension (PH). However, a detailed analysis of the metabolic changes in lungs at the early stage of PH, characterized by increased pulmonary artery pressure but prior to the development of right ventricle hypertrophy and failure, is lacking in a preclinical animal model of PH. Thus, we undertook a study using rats 14 days after exposure to monocrotaline (MCT), to determine whether we could identify early stage metabolic changes prior to the manifestation of developed PH. We observed changes in multiple pathways associated with the development of PH, including activated glycolysis, increased markers of proliferation, disruptions in carnitine homeostasis, increased inflammatory and fibrosis biomarkers, and a reduction in glutathione biosynthesis. Further, our global metabolic profile data compare favorably with prior work carried out in humans with PH. We conclude that despite the MCT-model not recapitulating all the structural changes associated with humans with advanced PH, including endothelial cell proliferation and the formation of plexiform lesions, it is very similar at a metabolic level. Thus, we suggest that despite its limitations it can still serve as a useful preclinical model for the study of PH

    Progress in Pulmonary Vein Stenosis: Lessons from Success in Treating Pulmonary Arterial Hypertension

    No full text
    Pulmonary vein stenosis (PVS) is a rare and poorly understood condition that can be classified as primary, acquired, status-post surgical repair of PVS, and/or associated with developmental lung disease. Immunohistochemical studies demonstrate that obstruction of the large (extrapulmonary) pulmonary veins is associated with the neointimal proliferation of myofibroblasts. This rare disorder is likely multifactorial with a spectrum of pathobiology. Treatments have been historically surgical, with an increasing repetitive interventional approach. Understanding the biology of these disorders is in its infancy; thus, medical management has lagged behind. Throughout medical history, an increased understanding of the underlying biology of a disorder has led to significant improvements in care and outcomes. One example is the treatment of pulmonary arterial hypertension (PAH). PAH shares several common themes with PVS. These include the spectrum of disease and biological alterations, such as vascular remodeling and vasoconstriction. Over the past two decades, an exponential increase in the understanding of the pathobiology of PAH has led to a dramatic increase in medical therapies that have changed the landscape of the disease. We believe that a similar approach to PVS can generate novel medical therapeutic targets that will markedly improve the outcome of these vulnerable patients
    • …
    corecore