126 research outputs found
Quantum lattice dynamical effects on the single-particle excitations in 1D Mott and Peierls insulators
As a generic model describing quasi-one-dimensional Mott and Peierls
insulators, we investigate the Holstein-Hubbard model for half-filled bands
using numerical techniques. Combining Lanczos diagonalization with Chebyshev
moment expansion we calculate exactly the photoemission and inverse
photoemission spectra and use these to establish the phase diagram of the
model. While polaronic features emerge only at strong electron-phonon
couplings, pronounced phonon signatures, such as multi-quanta band states, can
be found in the Mott insulating regime as well. In order to corroborate the
Mott to Peierls transition scenario, we determine the spin and charge
excitation gaps by a finite-size scaling analysis based on density-matrix
renormalization group calculations.Comment: 5 pages, 5 figure
Mott-Peierls Transition in the extended Peierls-Hubbard model
The one-dimensional extended Peierls-Hubbard model is studied at several band
fillings using the density matrix renormalization group method. Results show
that the ground state evolves from a Mott-Peierls insulator with a correlation
gap at half-filling to a soliton lattice with a small band gap away from
half-filling. It is also confirmed that the ground state of the Peierls-Hubbard
model undergoes a transition to a metallic state at finite doping. These
results show that electronic correlations effects should be taken into account
in theoretical studies of doped polyacetylene. They also show that a
Mott-Peierls theory could explain the insulator-metal transition observed in
this material.Comment: 4 pages with 3 embedded eps figure
Density-matrix renormalisation group approach to quantum impurity problems
A dynamic density-matrix renormalisation group approach to the spectral
properties of quantum impurity problems is presented. The method is
demonstrated on the spectral density of the flat-band symmetric single-impurity
Anderson model. We show that this approach provides the impurity spectral
density for all frequencies and coupling strengths. In particular, Hubbard
satellites at high energy can be obtained with a good resolution. The main
difficulties are the necessary discretisation of the host band hybridised with
the impurity and the resolution of sharp spectral features such as the
Abrikosov-Suhl resonance.Comment: 16 pages, 6 figures, submitted to Journal of Physics: Condensed
Matte
Induced local spin-singlet amplitude and pseudogap in high cuprates
In this paper we show that local spin-singlet amplitude with d-wave symmetry,
, can be induced by short-range spin correlations even
in the absence of pairing interactions. Fluctuation theory is formulated to
make connection between pseudogap temperature $T^{*}$, pseudogap size
$\Delta_{pg}$ and . In the present scenario for the
pseudogap, the normal state pseudogap is caused by the induced local
spin-singlet amplitude due to short-range spin correlations, which compete in
the low energy sector with superconducting correlations to make go to
zero near half-filling. Calculated falls from a high value onto the
line and closely follows mean-field N\'{e}el temperature .
The calculated is in good agreement with experimental results. We
propose an experiment in which the present scenario can be critically tested.Comment: 5 pages, 3 figure
Continuous-Time Quantum Monte Carlo Algorithm for the Lattice Polaron
An efficient continuous-time path-integral Quantum Monte Carlo algorithm for
the lattice polaron is presented. It is based on Feynman's integration of
phonons and subsequent simulation of the resulting single-particle
self-interacting system. The method is free from the finite-size and
finite-time-step errors and works in any dimensionality and for any range of
electron-phonon interaction. The ground-state energy and effective mass of the
polaron are calculated for several models. The polaron spectrum can be measured
directly by Monte Carlo, which is of general interest.Comment: 5 pages, 4 figures, published versio
Ground-state dispersion and density of states from path-integral Monte Carlo. Application to the lattice polaron
A formula is derived that relates the ground-state dispersion of a many-body
system with the end-to-end distribution of paths with open boundary conditions
in imaginary time. The formula does not involve the energy estimator. It allows
direct measurement of the ground-state dispersion by quantum Monte Carlo
methods without analytical continuation or auxiliary fitting. The formula is
applied to the lattice polaron problem. The exact polaron spectrum and density
of states are calculated for several models in one, two, and three dimensions.
In the adiabatic regime of the Holstein model, the polaron density of states
deviates spectacularly from the free-particle shape.Comment: 8 pages, 9 figure
Excitation Spectrum of the Holstein Model
In this paper the polaron problem for the Holstein model is studied in the
weak coupling limit. We use second order perturbation theory to construct
renormalized electron and phonons. Eigenstates of the Hamiltonian are labelled
and the excitation spectrum is constructed.Comment: 4 pages, revtex, 1 figures, more stuff at
http://www.mpipks-dresden.mpg.de/~robin/robin.htm
Excitons in one-dimensional Mott insulators
We employ dynamical density-matrix renormalization group (DDMRG) and
field-theory methods to determine the frequency-dependent optical conductivity
in one-dimensional extended, half-filled Hubbard models. The field-theory
approach is applicable to the regime of `small' Mott gaps which is the most
difficult to access by DDMRG. For very large Mott gaps the DDMRG recovers
analytical results obtained previously by means of strong-coupling techniques.
We focus on exciton formation at energies below the onset of the absorption
continuum. As a consequence of spin-charge separation, these Mott-Hubbard
excitons are bound states of spinless, charged excitations (`holon-antiholon'
pairs). We also determine exciton binding energies and sizes. In contrast to
simple band insulators, we observe that excitons exist in the Mott-insulating
phase only for a sufficiently strong intersite Coulomb repulsion. Furthermore,
our results show that the exciton binding energy and size are not related in a
simple way to the strength of the Coulomb interaction.Comment: 15 pages, 6 eps figures, corrected typos in labels of figures 4,5,
and
Dynamical density correlation function of 1D Mott insulators in a magnetic field
We consider the one dimensional (1D) extended Hubbard model at half filling
in the presence of a magnetic field. Using field theory techniques we calculate
the dynamical density-density correlation function in the
low-energy limit. When excitons are formed, a singularity appears in
at a particular energy and momentum transfer.Comment: 7 pages, 4 figure
- …