10 research outputs found

    Landslide Susceptibility Assessment of a Part of the Western Ghats (India) Employing the AHP and F-AHP Models and Comparison with Existing Susceptibility Maps

    Get PDF
    Landslides are prevalent in the Western Ghats, and the incidences that happened in 2021 in the Koottickal area of the Kottayam district (Western Ghats) resulted in the loss of 10 lives. The objectives of this study are to assess the landslide susceptibility of the high-range local self-governments (LSGs) in the Kottayam district using the analytical hierarchy process (AHP) and fuzzy-AHP (F-AHP) models and to compare the performance of existing landslide susceptible maps. This area never witnessed any massive landslides of this dimension, which warrants the necessity of relooking into the existing landslide-susceptible models. For AHP and F-AHP modeling, ten conditioning factors were selected: slope, soil texture, land use/land cover (LULC), geomorphology, road buffer, lithology, and satellite image-derived indices such as the normalized difference road landslide index (NDRLI), the normalized difference water index (NDWI), the normalized burn ratio (NBR), and the soil-adjusted vegetation index (SAVI). The landslide-susceptible zones were categorized into three: low, moderate, and high. The validation of the maps created using the receiver operating characteristic (ROC) technique ascertained the performances of the AHP, F-AHP, and TISSA maps as excellent, with an area under the ROC curve (AUC) value above 0.80, and the NCESS map as acceptable, with an AUC value above 0.70. Though the difference is negligible, the map prepared using the TISSA model has better performance (AUC = 0.889) than the F-AHP (AUC = 0.872), AHP (AUC = 0.867), and NCESS (AUC = 0.789) models. The validation of maps employing other matrices such as accuracy, mean absolute error (MAE), and root mean square error (RMSE) also confirmed that the TISSA model (0.869, 0.226, and 0.122, respectively) has better performance, followed by the F-AHP (0.856, 0.243, and 0.147, respectively), AHP (0.855, 0.249, and 0.159, respectively), and NCESS (0.770, 0.309, and 0.177, respectively) models. The most landslide-inducing factors in this area that were identified through this study are slope, soil texture, LULC, geomorphology, and NDRLI. Koottickal, Poonjar-Thekkekara, Moonnilavu, Thalanad, and Koruthodu are the LSGs that are highly susceptible to landslides. The identification of landslide-susceptible areas using diversified techniques will aid decision-makers in identifying critical infrastructure at risk and alternate routes for emergency evacuation of people to safer terrain during an exigency

    Spatio-Temporal Evolution of Rainfall over the Period 1981–2020 and Management of Surface Water Resources in the Nakanbe–Wayen Watershed in Burkina Faso

    No full text
    Spatio-temporal analysis of rainfall trends in a watershed is an effective tool for sustainable water resources management, as it allows for an understanding of the impacts of these changes at the watershed scale. The objective of the present study is to analyze the impacts of climate change on the availability of surface water resources in the Nakanbe–Wayen watershed over the period from 1981 to 2020. The analysis was conducted on in situ rainfall data collected from 14 meteorological stations distributed throughout the watershed and completed with CHIRPS data. Ten precipitation indices, recommended by the ETCCDI (Expert Team on Climate Change Detection and Indices), were calculated using the RClimDex package. The results show changes in the distribution of annual precipitation and an increasing trend in annual precipitation. At the same time, a trend towards an increase in the occurrence and intensity of extreme events was also observed over the last 4 decades. In light of these analyses, it should be emphasized that the increase in precipitation observed in the Nakanbe–Wayen watershed is induced by the increase in the occurrence and intensity of events, as a trend towards an increase in persistent drought periods (CDD) is observed. This indicates that the watershed is suffering from water scarcity. Water stress and water-related hazards have a major impact on communities and ecosystems. In these conditions of vulnerability, the development of risk-management strategies related to water resources is necessary, especially at the local scale. This should be formulated in light of observed and projected climate extremes in order to propose an appropriate and anticipated management strategy for climate risks related to water resources at the watershed scale

    Flood vulnerability of a few areas in the foothills of the Western Ghats: a comparison of AHP and F-AHP models

    No full text
    Flooding is one of the most destructive natural catastrophes that can strike anywhere in the world. With the recent, but frequent catastrophic flood events that occurred in the narrow stretch of land in southern India, sandwiched between the Western Ghats and the Arabian Sea, this study was initiated. The goal of this research is to identify flood-vulnerable zones in this area by making the local self governing bodies as the mapping unit. This study also assessed the predictive accuracy of analytical hierarchy process (AHP) and fuzzy-analytical hierarchy process (F-AHP) models. A total of 20 indicators (nine physical-environmental variables and 11 socio-economic variables) have been considered for the vulnerability modelling. Flood-vulnerability maps, created using remotely sensed satellite data and geographic information systems, was divided into five zones. AHP and F-AHP flood vulnerability models identified 12.29% and 11.81% of the area as very high-vulnerable zones, respectively. The receiver operating characteristic (ROC) curve is used to validate these flood vulnerability maps. The flood vulnerable maps, created using the AHP and F-AHP methods, were found to be outstanding based on the area under the ROC curve (AUC) values. This demonstrates the effectiveness of these two models. The results of AUC for the AHP and F-AHP models were 0.946 and 0.943, respectively, articulating that the AHP model is more efficient than its chosen counterpart in demarcating the flood vulnerable zones. Decision-makers and land-use planners will find the generated vulnerable zone maps useful, particularly in implementing flood mitigation plans

    Flood risk assessment and mapping in Abidjan district using multi-criteria analysis (AHP) model and geoinformation techniques, (cote d’ivoire)

    No full text
    Flood is one of the most destructive natural disasters of climate change effects in West Africa. Flood risk occurrence is a combination of natural and anthropogenic factors, which calls for a better understanding of its spatial extent. The aim of this paper is to identify, and map areas of flood risk in Abidjan district. This work is based on the integration of multi-criteria data including slope, drainage density, type of soil, Isohyet, population density, land use and sewer system density within ArcGIS interface. The resulting AHP flood risk map shows that areas under high and very high flood risk covers 34 % of the study area. The Analytic Hierarchy Process (AHP) method used as a multi-criteria analysis allowed the integration of several elements under two criteria, hazards and vulnerability, for flood risk assessment and mapping. Results revealed that, Abidjan district is heavily exposed to the risk of flooding. Eight out of thirteen (8/13) municipalities within the district are at a high risk of flooding which calls for decision makers to effectively develop strategies for future flood occurrences within the Abidjan district (South of Côte d’Ivoire)

    Contribution of Sentinel-3A Radar Altimetry Data to the Study of the Water Level Variations in Lake Buyo (West of Côte d’Ivoire)

    No full text
    The artificial Lake Buyo is an important water reservoir that ensures the availability of water for multiple purposes: drinking water supply, fishing, and energy. In the last five years, this lake has experienced extreme variations in its surface area and water levels, including very significant declines, which has impacted the supply of electricity. This study aimed to assess temporal variations in the water levels of Lake Buyo using radar altimetry. Altimetric data from the Sentinel-3A satellite on Lake Buyo (tracks 16 (orbit 8) and 743 (orbit 372)) were selected over the period from 31 May 2016 to 12 June 2021 and compared to the in situ measurements provided by the Direction de la Production de l’Electricité de Côte d’Ivoire (DPE-CI). The extraction of the time series of the Sentinel-3A altimetric water levels and their corrections (geophysical and environmental corrections) were carried out with the ALTiS software. The results showed an overall agreement between the altimetric water levels and the in situ measurements, with a correlation coefficient (R2) ranging from 0.98 to 0.99 obtained, as well as a Nash–Sutcliffe Efficiency (NSE) coefficient also between 0.98 and 0.99. Further, the bias (0.12 m and 0.13 m) and root mean square error (RMSE) (0.38 and 0.67 m) values showed that the results were acceptable. The analysis of the water levels time series allowed for the identification of two main periods: March to October and November to February. The first period corresponded to a high level period, recording a maximum level of 200.06 m. The second period, from November to March, was characterized by a drop in the water level, recording a minimum level of 187.42 m. The water levels time series provided by Sentinel-3 allowed us to appreciate the respective influences of seasonal and interannual variations on rainfall and the contributions of the Sassandra River tributaries to the water levels of Lake Buyo

    Vulnerability evaluation utilizing AHP and an ensemble model in a few landslide-prone areas of the Western Ghats, India

    No full text
    Landslides are among the most perilous hazards that usually happen in hilly terrains. The loss that ensues during a landslide, especially in highly-populated regions, calls for a vulnerability study. Thus, the purpose of this research is to detect landslide-vulnerable villages in a small part of the Western Ghats, an orographic mountain chain in South India that is proverbially prone to landslides. The study also evaluates the prediction capabilities of analytical hierarchy process (AHP) and ensemble fuzzy-AHP (F-AHP) models. 22 vulnerability indicators (11 physical-environmental and 11 socio-economic) served as the basis for this modeling. These data, derived both from field studies and remotely sensed satellite data, were collated in a geographic information system (GIS) environment, and landslide vulnerability maps were generated. Landslide vulnerability modeling using AHP and F-AHP models found 12.07% and 4.53% of the region, respectively, as very high-vulnerable. The developed landslide vulnerability maps are validated using the receiver operating characteristic (ROC) curve, sensitivity, specificity, Kappa index, mean squared error (MSE), and root mean squared error (RMSE) techniques. Based on the area under the ROC curve (AUC) scores, the landslide vulnerability maps developed utilizing these models were found to be outstanding. With an AUC score of 96.55% (0.96), the ensemble (F-AHP) was found to be more competent than the AHP model, which had an AUC value of 95.14% (0.95). The sensitivity, specificity, Kappa index, MSE, and RMSE values for the F-AHP model are 95.14%, 93.61%, 94.35%, 0.091, and 0.211, respectively, and for the AHP model, they are 92.93%, 94.04%, 92.45%, 0.099, and 0.228. Hence, in this study area, it can be affirmed that F-AHP is the better model for distinguishing vulnerable zones. As per the F-AHP model, Vellarada village is very highly vulnerable, and villages, namely Keezharoor and the western part of Peringamala, Vithura, and Mannoorkara, are highly vulnerable to landslides

    Contribution of Sentinel-3A Radar Altimetry Data to the Study of the Water Level Variations in Lake Buyo (West of Côte d’Ivoire)

    No full text
    The artificial Lake Buyo is an important water reservoir that ensures the availability of water for multiple purposes: drinking water supply, fishing, and energy. In the last five years, this lake has experienced extreme variations in its surface area and water levels, including very significant declines, which has impacted the supply of electricity. This study aimed to assess temporal variations in the water levels of Lake Buyo using radar altimetry. Altimetric data from the Sentinel-3A satellite on Lake Buyo (tracks 16 (orbit 8) and 743 (orbit 372)) were selected over the period from 31 May 2016 to 12 June 2021 and compared to the in situ measurements provided by the Direction de la Production de l’Electricité de Côte d’Ivoire (DPE-CI). The extraction of the time series of the Sentinel-3A altimetric water levels and their corrections (geophysical and environmental corrections) were carried out with the ALTiS software. The results showed an overall agreement between the altimetric water levels and the in situ measurements, with a correlation coefficient (R2) ranging from 0.98 to 0.99 obtained, as well as a Nash–Sutcliffe Efficiency (NSE) coefficient also between 0.98 and 0.99. Further, the bias (0.12 m and 0.13 m) and root mean square error (RMSE) (0.38 and 0.67 m) values showed that the results were acceptable. The analysis of the water levels time series allowed for the identification of two main periods: March to October and November to February. The first period corresponded to a high level period, recording a maximum level of 200.06 m. The second period, from November to March, was characterized by a drop in the water level, recording a minimum level of 187.42 m. The water levels time series provided by Sentinel-3 allowed us to appreciate the respective influences of seasonal and interannual variations on rainfall and the contributions of the Sassandra River tributaries to the water levels of Lake Buyo

    Forest Fire Risk Zone Mapping of Eravikulam National Park in India: A Comparison Between Frequency Ratio and Analytic Hierarchy Process Methods

    Get PDF
    Forest fire is one of the most common natural hazards occurring in the Western Ghats region of Kerala and is one of the reasons for forest degradation. This natural disaster causes considerable damage to the biodiversity of this region during the dry fire season. The area selected for the present study, Eravikulam National Park, which is predominantly of grassland vegetation, is also prone to forest fires. This study aims to delineate the forest fire risk zones in Eravikulam National Park using remote sensing (RS) data and geographic information system (GIS) techniques. In the present study, methods such as Analytic Hierarchy Process (AHP) and Frequency Ratio (FR) were used to derive the weights, and the results were compared. We have used seven factors, i.e. land cover types, normalized difference vegetation index, normalized difference water index, slope angle, slope aspect, distance from the settlement, and distance from the road to prepare the fire risk zone map. The area of the prepared risk zone maps is divided into three zones, namely low, moderate, and high. From the study, it was found that the fire occurring in this area is due to natural as well as anthropogenic factors. The prepared forest fire risk zone maps are validated using the fire incidence data for the period from January 2003 to June 2019 collected from the records of the Forest Survey of India. The investigation revealed that 72% and 24% of the fire incidences occurred in the high risk zone of the maps prepared using the AHP and FR methods, respectively, which ascertained the superiority of the AHP method over the FR method for forest fire risk zone mapping. The receiver operating characteristic (ROC) curve analysis gives an area under the ROC curve (AUC) value of 0.767 and 0.567 for the AHP and FR methods, respectively. The risk zone maps will be useful for staff of the forest department, planners, and officials of the disaster management department to take effective preventive and mitigation measures

    Wildfire Risk Zone Mapping in Contrasting Climatic Conditions: An Approach Employing AHP and F-AHP Models

    Get PDF
    Wildfires are one of the gravest and most momentous hazards affecting rich forest biomes worldwide; India is one of the hotspots due to its diverse forest types and human-induced reasons. This research aims to identify wildfire risk zones in two contrasting climate zones, the Wayanad Wildlife Sanctuary in the Western Ghats and the Kedarnath Wildlife Sanctuary in the Himalayas, using geospatial tools, analytical hierarchy process (AHP), and fuzzy-AHP models to assess the impacts of various conditioning factors and compare the efficacy of the two models. Both of the wildlife sanctuaries were severely battered by fires in the past, with more than 100 fire incidences considered for this modeling. This analysis found that both natural and anthropogenic factors are responsible for the fire occurrences in both of the two sanctuaries. The validation of the risk maps, utilizing the receiver operating characteristic (ROC) method, proved that both models have outstanding prediction accuracy for the training and validation datasets, with the F-AHP model having a slight edge over the other model. The results of other statistical validation matrices such as sensitivity, accuracy, and Kappa index also confirmed that F-AHP is better than the AHP model. According to the F-AHP model, about 22.49% of Kedarnath and 17.12% of Wayanad fall within the very-high risk zones. The created models will serve as a tool for implementing effective policies intended to reduce the impact of fires, even in other protected areas with similar forest types, terrain, and climatic conditions

    Wildfire Risk Zone Mapping in Contrasting Climatic Conditions: An Approach Employing AHP and F-AHP Models

    No full text
    Wildfires are one of the gravest and most momentous hazards affecting rich forest biomes worldwide; India is one of the hotspots due to its diverse forest types and human-induced reasons. This research aims to identify wildfire risk zones in two contrasting climate zones, the Wayanad Wildlife Sanctuary in the Western Ghats and the Kedarnath Wildlife Sanctuary in the Himalayas, using geospatial tools, analytical hierarchy process (AHP), and fuzzy-AHP models to assess the impacts of various conditioning factors and compare the efficacy of the two models. Both of the wildlife sanctuaries were severely battered by fires in the past, with more than 100 fire incidences considered for this modeling. This analysis found that both natural and anthropogenic factors are responsible for the fire occurrences in both of the two sanctuaries. The validation of the risk maps, utilizing the receiver operating characteristic (ROC) method, proved that both models have outstanding prediction accuracy for the training and validation datasets, with the F-AHP model having a slight edge over the other model. The results of other statistical validation matrices such as sensitivity, accuracy, and Kappa index also confirmed that F-AHP is better than the AHP model. According to the F-AHP model, about 22.49% of Kedarnath and 17.12% of Wayanad fall within the very-high risk zones. The created models will serve as a tool for implementing effective policies intended to reduce the impact of fires, even in other protected areas with similar forest types, terrain, and climatic conditions
    corecore