18 research outputs found

    Prevalence of frailty and association with patient centered outcomes:A prospective registry-embedded cohort study from India

    Get PDF
    Purpose:We aimed to study the prevalence of frailty, evaluate risk factors, and understand impact on outcomes in India. Methods:This was a prospective registry-embedded cohort study across 7 intensive care units (ICUs) and included adult patients anticipated to stay for at least 48hrs. Primary exposure was frailty, as defined by a score ≥5 on the Clinical Frailty Scale and primary outcome was ICU mortality. Secondary outcomes included in-hospital mortality and resource utilization. We used generalized linear models to evaluate risk factors and model association between frailty and outcomes. Results:838 patients were included, with median (IQR) age 57 (42,68) yrs.; 64.8% were male. Prevalence of frailty was 19.8%. Charlson comorbidity index (OR:1.73 (95%CI:1.39,2.15)), Subjective Global Assessment categories mild/moderate malnourishment (OR:1.90 (95%CI:1.29, 2.80)) and severe malnourishment [OR:4.76 (95% CI:2.10,10.77)] were associated with frailty. Frailty was associated with higher odds of ICU mortality (adjusted OR:2.04 (95% CI:1.25,3.33)), hospital mortality (adjusted OR:2.36 (95%CI:1.45,3.84)), development of stage2/3 AKI (unadjusted OR:2.35 (95%CI:1.60, 3.43)), receipt of non-invasive ventilation (unadjusted OR:2.68 (95%CI:1.77, 4.03)), receipt of vasopressors (unadjusted OR:1.47 (95%CI:1.04, 2.07)), and receipt of kidney replacement therapy (unadjusted OR:3.15 (95%CI:1.90, 5.17)). Conclusions:Frailty is common among critically ill patients in India and is associated with worse outcomes. <br/

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    A Comparative Study on Caprini RAM Vs DOH Tool for Thromboprophylaxis in ICU Setting at Tertiary Care Hospital

    No full text
    The aim of the study was to assess DVT prophylaxis using two models (Caprini RAM &amp; DOH tool) for the prevention of DVT in postoperative or critically ill patients and for better predictability of disease. In this prospective observational study, we compared the Caprini RAM and DOH tool in the ICU setting on 229 patients (140 men and 89 women). 205 patients were considered in the study, out of which 97 had Caprini RAM and 108 had DOH tool. A Prospective, observational comparative study was carried out in a tertiary care hospital for a period of 6 months. Patients were divided into two groups according to the RAM. The data were analyzed using SPSS software and the results were compared using the student t-test. Both GROUP A and GROUP B revealed that the majority of the patients (67.1% &amp; 55.6%) were above 60 years and a large proportion of them required DVT prophylaxis. In GROUP A 93% of forms were complete with 79% accuracy. In GROUP B 83% were complete. The most appropriate prophylaxis received by patients was Enoxaparin sodium 40 mg OD for about 97 (30%) patients and Heparin 5000 IU BD for 108 (30%) based on their Caprini scores and NICE guidelines respectively. The majority of patients in Group A did not require dosage adjustments, but in 20% of cases, it was necessary. Statistical significance was achieved with a p-value less than 0.05. The study demonstrates DOH tool is better than Caprini RAM to be used in hospitals, for risk assessment of VTE in both medical and surgical patients for accuracy and predictability of the prophylaxis. Keywords: DVT, Risk assessment, Caprini RAM, DOH tool, pharmacological and mechanical Prophylaxis

    Impact of COVID-19 on non-COVID intensive care unit service utilization, case mix and outcomes: A registry-based analysis from India

    No full text
    Background: Coronavirus disease 2019 (COVID-19) has been responsible for over 3.4 million deaths globally and over 25 million cases in India. As part of the response, India imposed a nation-wide lockdown and prioritized COVID-19 care in hospitals and intensive care units (ICUs). Leveraging data from the Indian Registry of IntenSive care, we sought to understand the impact of the COVID-19 pandemic on critical care service utilization, case-mix, and clinical outcomes in non-COVID ICUs. Methods: We included all consecutive patients admitted between 1st October 2019 and 27th September 2020. Data were extracted from the registry database and included patients admitted to the non-COVID or general ICUs at each of the sites. Outcomes included measures of resource-availability, utilisation, case-mix, acuity, and demand for ICU beds. We used a Mann-Whitney test to compare the pre-pandemic period (October 2019 - February 2020) to the pandemic period (March-September 2020). In addition, we also compared the period of intense lockdown (March-May 31st 2020) with the pre-pandemic period. Results: There were 3424 patient encounters in the pre-pandemic period and 3524 encounters in the pandemic period. Comparing these periods, weekly admissions declined (median [Q1 Q3] 160 [145,168] to 113 [98.5,134]; p<0.001); unit turnover declined (median [Q1 Q3] 12.1 [11.32,13] to 8.58 [7.24,10], p<0.001), and APACHE II score increased (median [Q1 Q3] 19 [19,20] to 21 [20,22] ; p<0.001). Unadjusted ICU mortality increased (9.3% to 11.7%, p=0.015) and the length of ICU stay was similar (median [Q1 Q3] 2.11 [2, 2] vs. 2.24 [2, 3] days; p=0.151). Conclusion: Our registry-based analysis of the impact of COVID-19 on non-COVID critical care demonstrates significant disruptions to healthcare utilization during the pandemic and an increase in the severity of illness

    Implementing an intensive care registry in India: Preliminary results of the case-mix program and an opportunity for quality improvement and research

    No full text
    Background: The epidemiology of critical illness in India is distinct from high-income countries. However, limited data exist on resource availability, staffing patterns, case-mix and outcomes from critical illness. Critical care registries, by enabling a continual evaluation of service provision, epidemiology, resource availability and quality, can bridge these gaps in information. In January 2019, we established the Indian Registry of IntenSive care to map capacity and describe case-mix and outcomes. In this report, we describe the implementation process, preliminary results, opportunities for improvement, challenges and future directions. Methods: All adult and paediatric ICUs in India were eligible to join if they committed to entering data for ICU admissions. Data are collected by a designated representative through the electronic data collection platform of the registry. IRIS hosts data on a secure cloud-based server and access to the data is restricted to designated personnel and is protected with standard firewall and a valid secure socket layer (SSL) certificate. Each participating ICU owns and has access to its own data. All participating units have access to de-identified network-wide aggregate data which enables benchmarking and comparison. Results: The registry currently includes 14 adult and 1 paediatric ICU in the network (232 adult ICU beds and 9 paediatric ICU beds). There have been 8721 patient encounters with a mean age of 56.9 (SD 18.9); 61.4% of patients were male and admissions to participating ICUs were predominantly unplanned (87.5%). At admission, most patients (61.5%) received antibiotics, 17.3% needed vasopressors, and 23.7% were mechanically ventilated. Mortality for the entire cohort was 9%. Data availability for demographics, clinical parameters, and indicators of admission severity was greater than 95%. Conclusions: IRIS represents a successful model for the continual evaluation of critical illness epidemiology in India and provides a framework for the deployment of multi-centre quality improvement and context-relevant clinical research

    WHO O2CoV2: oxygen requirements and respiratory support in patients with COVID-19 in low-and-middle income countries—protocol for a multicountry, prospective, observational cohort study

    No full text
    Introduction SARS-CoV-2 has been identified as the cause of the disease officially named COVID-19, primarily a respiratory illness. COVID-19 was characterised as a pandemic on 11 March 2020. It has been estimated that approximately 20% of people with COVID-19 require oxygen therapy. Oxygen has been listed on the WHO Model List of Essential Medicines List and Essential Medicines List for Children for almost two decades. The COVID-19 pandemic has highlighted, more than ever, the acute need for scale-up of oxygen therapy. Detailed data on the use of oxygen therapy in low-and-middle income countries at the patient and facility level are needed to target interventions better globally.Methods and analysis We aim to describe the requirements and use of oxygen at the facility and patient level of approximately 4500 patients with COVID-19 in 30 countries. Our objectives are specifically to characterise type and duration of different modalities of oxygen therapy delivered to patients; describe demographics and outcomes of hospitalised patients with COVID-19; and describe facility-level oxygen production and support. Primary analyses will be descriptive in nature. Respiratory support transitions will be described in Sankey plots, and Kaplan-Meier models will be used to estimate probability of each transition. A multistate model will be used to study the course of hospital stay of the study population, evaluating transitions of escalating respiratory support transitions to the absorbing states.Ethics and dissemination WHO Ad Hoc COVID-19 Research Ethics Review Committee (ERC) has approved this global protocol. When this protocol is adopted at specific country sites, national ERCs may make require adjustments in accordance with their respective national research ethics guidelines. Dissemination of this protocol and global findings will be open access through peer-reviewed scientific journals, study website, press and online media.Trial registration number NCT04918875

    Intravenous vitamin C for patients hospitalized with COVID-19 : two harmonized randomized clinical trials

    No full text
    Abstract: Importance The efficacy of vitamin C for hospitalized patients with COVID-19 is uncertain.Objective To determine whether vitamin C improves outcomes for patients with COVID-19.Design, Setting, and Participants Two prospectively harmonized randomized clinical trials enrolled critically ill patients receiving organ support in intensive care units (90 sites) and patients who were not critically ill (40 sites) between July 23, 2020, and July 15, 2022, on 4 continents.InterventionsPatients were randomized to receive vitamin C administered intravenously or control (placebo or no vitamin C) every 6 hours for 96 hours (maximum of 16 doses).Main Outcomes and Measures The primary outcome was a composite of organ support-free days defined as days alive and free of respiratory and cardiovascular organ support in the intensive care unit up to day 21 and survival to hospital discharge. Values ranged from -1 organ support-free days for patients experiencing in-hospital death to 22 organ support-free days for those who survived without needing organ support. The primary analysis used a bayesian cumulative logistic model. An odds ratio (OR) greater than 1 represented efficacy (improved survival, more organ support-free days, or both), an OR less than 1 represented harm, and an OR less than 1.2 represented futility.Results Enrollment was terminated after statistical triggers for harm and futility were met. The trials had primary outcome data for 1568 critically ill patients (1037 in the vitamin C group and 531 in the control group; median age, 60 years [IQR, 50-70 years]; 35.9% were female) and 1022 patients who were not critically ill (456 in the vitamin C group and 566 in the control group; median age, 62 years [IQR, 51-72 years]; 39.6% were female). Among critically ill patients, the median number of organ support-free days was 7 (IQR, -1 to 17 days) for the vitamin C group vs 10 (IQR, -1 to 17 days) for the control group (adjusted proportional OR, 0.88 [95% credible interval {CrI}, 0.73 to 1.06]) and the posterior probabilities were 8.6% (efficacy), 91.4% (harm), and 99.9% (futility). Among patients who were not critically ill, the median number of organ support-free days was 22 (IQR, 18 to 22 days) for the vitamin C group vs 22 (IQR, 21 to 22 days) for the control group (adjusted proportional OR, 0.80 [95% CrI, 0.60 to 1.01]) and the posterior probabilities were 2.9% (efficacy), 97.1% (harm), and greater than 99.9% (futility). Among critically ill patients, survival to hospital discharge was 61.9% (642/1037) for the vitamin C group vs 64.6% (343/531) for the control group (adjusted OR, 0.92 [95% CrI, 0.73 to 1.17]) and the posterior probability was 24.0% for efficacy. Among patients who were not critically ill, survival to hospital discharge was 85.1% (388/456) for the vitamin C group vs 86.6% (490/566) for the control group (adjusted OR, 0.86 [95% CrI, 0.61 to 1.17]) and the posterior probability was 17.8% for efficacy.Conclusions and Relevance In hospitalized patients with COVID-19, vitamin C had low probability of improving the primary composite outcome of organ support-free days and hospital survival
    corecore