34 research outputs found

    Creació d’un programa informàtic per al monitoratge dels paràmetres de treball i a l’ajut al guiatge d’un tractor agrícola

    Get PDF
    L’objectiu projecte és desenvolupar un sistema d’ajut al guiatge universal adaptable a qualsevol vehicle que permeti incrementar significativament l’eficiència de les feines a realitzar per la maquinària al camp. El sistema proposat es pot configurar d’acord amb les característiques de la maquinària o de la tasca a realitzar i és capaç de guiar en línia recta i crear paral·leles a la passada recta de referència. Un altre objectiu és millorar el rendiment, la fiabilitat i la usabilitat del programari de monitoratge inicial instal·lat al tractor, com també caracteritzar el receptor GPS AgGPS 332 de Trimble® per a comprovar la precisió de l’aparell. Els resultats obtinguts en la millora del programa de monitoratge són molt satisfactoris a l’haver corregit imprecisions de funcionament que en limitaven l’usabilitat. Els resultats obtinguts en la caracterització del receptor AgGPS 332 permeten valorar millor quin tipus de correcció diferencial és més convenient per a la precisió de treball requerida segons el seu cost de posada en marxa i de funcionament.Els resultats obtinguts en la validació de l’ajut al guiatge, han validat el guiatge a 10 metres vista com un ajut al guiatge equivalent al guiatge manual quan la velocitat de treball és de 5 km/h, el tractorista té referències visuals i no està fatigat. Els resultats obtinguts pels guiatges a 3 i 50 metres no són satisfactoris a 5 km/h. Tanmateix, durant el procés de disseny, la realització dels assajos i durant l’anàlisi de resultats s’han identificat algunes mancances i limitacions i es proposen una sèrie de millores per tal de solucionar-les

    Listed under each pattern are examples of phage members for that pattern

    No full text
    Prophages are underlined. The strongly positionally conserved genes are depicted with circles. The inclined gene symbols (e.g. prt) depict genes that are conserved in terms of position and existence among most, but not all, of the phage members.<p><b>Copyright information:</b></p><p>Taken from "Genome classification by gene distribution: An overlapping subspace clustering approach"</p><p>http://www.biomedcentral.com/1471-2148/8/116</p><p>BMC Evolutionary Biology 2008;8():116-116.</p><p>Published online 23 Apr 2008</p><p>PMCID:PMC2383906.</p><p></p

    A darker color indicates a stronger association between the phage and the phage group

    No full text
    Association strength is determined by proteomic distance for PPT and gene-distribution distance for O-HARP. For instance, phage bIL170 has a darker grey than bIL67 in the sk1-like group for the alphabet letter "P" because it has a closer proteomic distance to phage sk1. Phage 933W has a light grey for "O" because its gene distribution (computed by O-HARP) is not as close to phage as some other phages such as HK97 and P22. Abbreviation: Φ – Bacteriophage.<p><b>Copyright information:</b></p><p>Taken from "Genome classification by gene distribution: An overlapping subspace clustering approach"</p><p>http://www.biomedcentral.com/1471-2148/8/116</p><p>BMC Evolutionary Biology 2008;8():116-116.</p><p>Published online 23 Apr 2008</p><p>PMCID:PMC2383906.</p><p></p

    Similarity in genomic structure between bacteriophage TP901-1 and Sfi21

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Genome classification by gene distribution: An overlapping subspace clustering approach"</p><p>http://www.biomedcentral.com/1471-2148/8/116</p><p>BMC Evolutionary Biology 2008;8():116-116.</p><p>Published online 23 Apr 2008</p><p>PMCID:PMC2383906.</p><p></p

    The overall process of detecting subspace clusters from a collection of genome sequences

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Genome classification by gene distribution: An overlapping subspace clustering approach"</p><p>http://www.biomedcentral.com/1471-2148/8/116</p><p>BMC Evolutionary Biology 2008;8():116-116.</p><p>Published online 23 Apr 2008</p><p>PMCID:PMC2383906.</p><p></p

    Gene function prediction based on genomic context clustering and discriminative learning: an application to bacteriophages-0

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Gene function prediction based on genomic context clustering and discriminative learning: an application to bacteriophages"</p><p>http://www.biomedcentral.com/1471-2105/8/S4/S6</p><p>BMC Bioinformatics 2007;8(Suppl 4):S6-S6.</p><p>Published online 22 May 2007</p><p>PMCID:PMC1892085.</p><p></p>s (A) specified in the form of regular expressions are matched against the genome database (B) via the text processing unit (D), which result may then be refined (C). A clustering system (E) based on the synteny scores of the matching genes brings together genomes that show conservation of gene order and position (G). Such information is used to generate a set of positive and negative data (genes) to train the classification system (F) that produces function prediction results (H)

    DNA repair genes transcriptionally modulated in LCLs at 4 hr post-IR (p&lt;0.05).

    No full text
    <p>DNA repair genes transcriptionally modulated in LCLs at 4 hr post-IR (p&lt;0.05).</p

    Alternative transcripts in DNA repair genes are induced by IR.

    No full text
    <p>Alternative transcripts in the DNA repair genes, XPC (A) and RRM2B (B) in response to IR are shown. Graph axes are as in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0053358#pone-0053358-g001" target="_blank">figure 1</a>; PCR products from 5′-RML-RACE were run on a 2% agarose gel. An arrow indicates the amplicon from the alternative initiated transcript that was sequenced (gel picture to the right of the panel; <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0053358#pone.0053358.s004" target="_blank">Figure S4</a>). Diagrams of the predominant transcripts (initiating by P1) and the alternatively initiated (P2) transcripts after IR are shown below. Primer locations for 5′ RLM-RACE are indicated below exon 2 (arrow pointing to the left).</p

    Induction of DNA repair genes at the exon level four hours after treatment with 10 Gy IR in primary fibroblast cells.

    No full text
    <p>The DNA repair genes: <i>XPC</i> (A), <i>POLH</i> (B), <i>DDB2</i> (C), <i>PCNA</i> (D) and <i>RRM2B</i> (E) as identified using Partek Genomics Suite 6.6 statistical package. Relative fluorescence (y-axis; log<sub>2</sub>) is plotted for each PSR (x-axis). Core PSRs are labelled numerically in a 5′ to 3′ direction (left to right). Samples were either sham irradiated (red) or irradiated (blue) with 10 Gy of radiation from a <sup>137</sup>Cs source. RNA was collected 4 hours following treatment. Arrow indicates the PSR region to which primers were designed for qRT-PCR used in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0053358#pone-0053358-g003" target="_blank">figure 3B</a>. Error bars = SEM (n = 12).</p

    Dose response and time course of selected DNA repair genes in human cell lines.

    No full text
    <p>PSR hybridization signals are shown for a two DNA repair genes that are induced following radiation. These are <i>POLH</i> (A, B) and <i>DDB2</i> (C–F) in LCLs (A–D) or fibroblasts (E, F). Relative fluorescence is plotted on the y-axis and PSRs are plotted evenly across the x-axis in a 5′ to 3′ direction (left to right). Samples from different individuals were either sham irradiated (red) or irradiated with 1 Gy (blue), 2 Gy (green), 5 Gy (purple), 10 Gy (orange) or 20 Gy (aqua) of radiation (A, C and E; n = 4). RNA was collect 4 hours following treatment. Time course of DNA repair genes were either sham irradiated (red) or irradiated with 10 Gy and RNA isolated 2 hrs (blue), 4 hrs (green), 8 hrs (purple), 24 hours (orange) or 48 hours (aqua) after irradiation (B, D and F; n = 4). Error bars = SEM.</p
    corecore