142 research outputs found

    The Method for Testing the Dynamic of Take-off

    Get PDF
    Among various sport branches there are such in which the take-off efficiency, and consequently, performing of the exercise depends upon technique and muscles ability to release the maximal energy in a short time. Long and high jumps, acrobatic jumps, ski jumps, volley-ball and basket-ball jumps should be included among the above described branches. In these sports take-offs with one or both legs are employed. Certain elements which may be treated as belonging to technique have some influence upon the efficiency of the energy released during a take-off. In the case of the features in question they are: a degree and velocity of flexion of legs' joints before their extension. On the basis of their research, Murray et al. (1970) and Scudder (1980) stated that the optimum angle for achieving the maximal knee extension strength is the angle of 120° (in isokinetic conditions). Lindahl et al. (1969) obtained similar results in isometric conditions. Osterning et al. (1982) proved that the maximal strength can be reached at the angle form 100° to 110°. Secher et al. (1976) were examining the maximal strength of the leg extensors during a take-off with one leg and with both legs. They noted obvious differences between the strength measures in both tests, which must be connected with the take-off efficiency. The above mentioned question was dealt with by Van Soest et al. (1985). While examining take-off with one and both legs of well-trained volley-ball players they obtained jumps' results: 0.31 m and 0.54 m respectively. In this paper we intend to test the take-off with one leg and the take-off with both legs employing a pendulum which makes it possible to eliminate gravity force which normally influences a take-off. Take-off tested in this way analysed on the background of the static strength of legs

    Effectiveness of an Interprofessional Education Event for Graduate Health Professional Students

    Get PDF
    ABSTRACT Purpose: The purpose of this study was to investigate the impact of a single, optional, half-day, interprofessional education (IPE) event for a myriad of graduate-level health professional students (n=44) at a university in Illinois, USA. Methods: The researchers in this study examined students’ performance on two out of six of the domains on the Interprofessiomnal Collaborator Assessment Rubric (ICAR): Roles and Responsibilities and Communication Strategies. This study also investigated quantitative and qualitative findings related to student perceptions regarding this IPE opportunity. Results: Results indicated that students met or exceeded the minimum competency for the ranking of “developing” for all 6 of the behaviors evaluated. Results also revealed that this half-day extracurricuricular IPE event was viewed favorably by health-professional students and created a venue whereby students belonging to different health professional programs can enter into discussions and learn about each others’ respective roles and responsibilities in patient care. Conclusion: The creation and implementation of short term extracurricular IPE events may be a valuable alternative for healthcare programs that are unable to implement IPE activities due to some of the common barriers impacting the development, implementation, or continuation of IPE opportunities

    Dependent coordinates in path integral measure factorization

    Full text link
    The transformation of the path integral measure under the reduction procedure in the dynamical systems with a symmetry is considered. The investigation is carried out in the case of the Wiener--type path integrals that are used for description of the diffusion on a smooth compact Riemannian manifold with the given free isometric action of the compact semisimple unimodular Lie group. The transformation of the path integral, which factorizes the path integral measure, is based on the application of the optimal nonlinear filtering equation from the stochastic theory. The integral relation between the kernels of the original and reduced semigroup are obtained.Comment: LaTeX2e, 28 page

    Electron and hole states in quantum-dot quantum wells within a spherical 8-band model

    Get PDF
    In order to study heterostructures composed both of materials with strongly different parameters and of materials with narrow band gaps, we have developed an approach, which combines the spherical 8-band effective-mass Hamiltonian and the Burt's envelope function representation. Using this method, electron and hole states are calculated in CdS/HgS/CdS/H_2O and CdTe/HgTe/CdTe/H_2O quantum-dot quantum-well heterostructures. Radial components of the wave functions of the lowest S and P electron and hole states in typical quantum-dot quantum wells (QDQWs) are presented as a function of radius. The 6-band-hole components of the radial wave functions of an electron in the 8-band model have amplitudes comparable with the amplitude of the corresponding 2-band-electron component. This is a consequence of the coupling between the conduction and valence bands, which gives a strong nonparabolicity of the conduction band. At the same time, the 2-band-electron component of the radial wave functions of a hole in the 8-band model is small compared with the amplitudes of the corresponding 6-band-hole components. It is shown that in the CdS/HgS/CdS/H_2O QDQW holes in the lowest states are strongly localized in the well region (HgS). On the contrary, electrons in this QDQW and both electron and holes in the CdTe/HgTe/CdTe/H_2O QDQW are distributed through the entire dot. The importance of the developed theory for QDQWs is proven by the fact that in contrast to our rigorous 8-band model, there appear spurious states within the commonly used symmetrized 8-band model.Comment: 15 pages, 5 figures, E-mail addresses: [email protected], [email protected]

    Selberg Supertrace Formula for Super Riemann Surfaces III: Bordered Super Riemann Surfaces

    Full text link
    This paper is the third in a sequel to develop a super-analogue of the classical Selberg trace formula, the Selberg supertrace formula. It deals with bordered super Riemann surfaces. The theory of bordered super Riemann surfaces is outlined, and the corresponding Selberg supertrace formula is developed. The analytic properties of the Selberg super zeta-functions on bordered super Riemann surfaces are discussed, and super-determinants of Dirac-Laplace operators on bordered super Riemann surfaces are calculated in terms of Selberg super zeta-functions.Comment: 43 pages, amste

    Development of an eight-band theory for quantum-dot heterostructures

    Get PDF
    We derive a nonsymmetrized 8-band effective-mass Hamiltonian for quantum-dot heterostructures (QDHs) in Burt's envelope-function representation. The 8x8 radial Hamiltonian and the boundary conditions for the Schroedinger equation are obtained for spherical QDHs. Boundary conditions for symmetrized and nonsymmetrized radial Hamiltonians are compared with each other and with connection rules that are commonly used to match the wave functions found from the bulk kp Hamiltonians of two adjacent materials. Electron and hole energy spectra in three spherical QDHs: HgS/CdS, InAs/GaAs, and GaAs/AlAs are calculated as a function of the quantum dot radius within the approximate symmetrized and exact nonsymmetrized 8x8 models. The parameters of dissymmetry are shown to influence the energy levels and the wave functions of an electron and a hole and, consequently, the energies of both intraband and interband transitions.Comment: 36 pages, 10 figures, E-mail addresses: [email protected], [email protected]

    On "Dotsenko-Fateev" representation of the toric conformal blocks

    Full text link
    We demonstrate that the recent ansatz of arXiv:1009.5553, inspired by the original remark due to R.Dijkgraaf and C.Vafa, reproduces the toric conformal blocks in the same sense that the spherical blocks are given by the integral representation of arXiv:1001.0563 with a peculiar choice of open integration contours for screening insertions. In other words, we provide some evidence that the toric conformal blocks are reproduced by appropriate beta-ensembles not only in the large-N limit, but also at finite N. The check is explicitly performed at the first two levels for the 1-point toric functions. Generalizations to higher genera are briefly discussed.Comment: 10 page

    Challenges of beta-deformation

    Full text link
    A brief review of problems, arising in the study of the beta-deformation, also known as "refinement", which appears as a central difficult element in a number of related modern subjects: beta \neq 1 is responsible for deviation from free fermions in 2d conformal theories, from symmetric omega-backgrounds with epsilon_2 = - epsilon_1 in instanton sums in 4d SYM theories, from eigenvalue matrix models to beta-ensembles, from HOMFLY to super-polynomials in Chern-Simons theory, from quantum groups to elliptic and hyperbolic algebras etc. The main attention is paid to the context of AGT relation and its possible generalizations.Comment: 20 page
    corecore