9 research outputs found

    A gestural repertoire of 1-2year old human children : in search of the ape gestures

    Get PDF
    This project was made possible with the generous financial help of the Baverstock Bequest to the Psychology and Neuroscience Department at the University of St Andrews.When we compare human gestures to those of other apes, it looks at first like there is nothing much to compare at all. In adult humans, gestures are thought to be a window into the thought processes accompanying language, and sign languages are equal to spoken language with all of its features. While some research firmly emphasises the difference between human gestures and those of other apes, the question about whether there are any commonalities has rarely been investigated, and is mostly confined to pointing gestures. The gestural repertoires of nonhuman ape species have been carefully studied and described with regard to their form and function – but similar approaches are much rarer in the study of human gestures. This paper applies the methodology commonly used in the study of nonhuman ape gestures to the gestural communication of human children in their second year of life. We recorded (n=13) children’s gestures in a natural setting with peers and caregivers in Germany and Uganda. Children employed 52 distinct gestures, 46 (89%) of which are present in the chimpanzee repertoire. Like chimpanzees, they used them both singly, and in sequences; and employed individual gestures flexibly towards different goals.Publisher PDFPeer reviewe

    Maternal-offspring conflict leads to the evolution of dominant zygotic sex determination.

    No full text
    Sex determination in many species involves interactions among maternally expressed genes (eg, mRNA's and proteins placed into the egg) and zygotically expressed genes. Recent studies have proposed that conflicting selective pressures can occur between maternally and zygotically expressed sex determining loci and that these may play a role in shaping the evolution of sex determining systems. Here we show that such genetic conflict occurs under very general circumstances. Whenever sex ratio among progeny in a family affects the fitness of either progeny in that family or maternal fitness, then maternal-zygotic genetic conflict occurs. Furthermore, we show that this conflict typically results in a "positive feedback loop" that leads to the evolution of a dominant zygotic sex determining locus. When males more negatively effect fitness within the family, a male heterogametic (XY male) sex determining system evolves, whereas when females more negatively effect fitness in the family, a female heterogametic (ZW female) system evolves. Individuals with the dominant sex allele are one sex, and the opposite sex is determined by maternally-expressed genes in individuals without the dominant sex allele. Results therefore suggest that maternal-zygotic conflict could play a role in the early evolution of chromosomal sex determining systems. Predictions are made concerning the patterns of expression of maternal and zygotic sex determining genes expected to result from conflict over sex determination

    A gestural repertoire of 1- to 2-year-old human children: in search of the ape gestures

    No full text
    corecore