4 research outputs found

    Mapping Flow-Obstructing Structures on Global Rivers

    Get PDF
    To help store water, facilitate navigation, generate energy, mitigate floods, and support industrial and agricultural production, people have built and continue to build obstructions to natural flow in rivers. However, due to the long and complex history of constructing and removing such obstructions, we lack a globally consistent record of their locations and types. Here, we used a consistent method to visually locate and classify obstructions on 2.1 million km of large rivers (width ≥30 m) globally. We based our mapping on Google Earth Engine’s high resolution images, which for many places have meter-scale resolution. The resulting Global River Obstruction Database (GROD) consists of 30,549 unique obstructions, covering six different obstruction types: dam, lock, low head dam, channel dam, and two types of partial dams. By classifying a subset of the obstructions multiple times, we are able to show high classification consistency (87% mean balanced accuracy) for the three types of obstructions that fully intersect rivers: dams, low head dams, and locks. The classification of the three types of partial obstructions are somewhat less consistent (61% mean balanced accuracy). Overall, by comparing GROD to similar datasets, we estimate GROD likely captured >90% of the obstructions on large rivers. We anticipate that GROD will be of wide interest to the hydrological modeling, aquatic ecology, geomorphology, and water resource management communities

    A systematic approach for prioritizing multiple management actions for invasive species

    No full text
    The successful management and eradication of invasive species is often constrained by insufficient or inconsistent funding. Consequently, managers are usually forced to select a subset of infested areas to manage. Further, managers may be unaware of the most effective methods for identifying priority areas and so are unable to maximize the effectiveness of their limited resources. To address these issues, we present a spatially explicit decision method that can be used to identify actions to manage invasive species while minimizing costs and the likelihood of reinvasion. We apply the method to a real-world management scenario, aimed at managing an invasive aquatic macrophyte, olive hymenachne (Hymenachne amplexicaulis), which is one of the most threatening invasives in tropical Australia, affecting water quality, freshwater biodiversity, and fisheries

    Coarse-filter surrogates do not represent freshwater fish diversity at a regional scale in Queensland, Australia

    No full text
    Abiotic and biologically informed classifications are often used in conservation planning as coarse-filter surrogates for species. The relationship between these surrogates and the distribution of species is commonly assumed, but rarely assessed by planners. We derived four abiotic and eight biologically informed classifications of stream reaches to serve as surrogates for biodiversity patterns in the Wet Tropics bioregion, Queensland, Australia. We used stream reaches as planning units and, as conservation targets for each surrogate, we used two percentages – 10% and 30% – of the total stream reach length occupied by each class. We then derived minimum sets of planning units to meet targets for each surrogate and tested the effectiveness of the surrogates by calculating the average achievement of the same targets for predicted distributions of 28 fish species. Our results showed that neither abiotic nor biologically informed classifications were good at representing freshwater fish species; in fact none of the surrogates led to average representation of species better than randomly selected planning units. There were two main reasons for this poor performance. First, none of the surrogates had high classification strength or informativeness about compositional change in fish species within the study region. Second, frequency distributions of probabilities of occurrence for most fish species were strongly right-skewed, with few stream reaches having high probabilities. Combined, these results meant that selection of stream reaches to achieve surrogate targets was effectively random with respect to probabilities of fish species occurrence, leading to poor representation of fish species. We conclude there is a limited basis for using coarse-filter surrogates to represent freshwater fish diversity in this region, and that there is a clear need for research in this as well as other regions if planners are to understand the limitations associated with coarse-filter surrogates for representing freshwater biodiversity more broadly

    A framework to identify enabling and urgent actions for the 2020 Aichi Targets

    No full text
    In 2010, the parties of the Convention on Biological Diversity (CBD) adopted the Strategic Plan for Biodiversity 2011–2020 with the mission of halting biodiversity loss and enhance the benefits it provides to people. The 20 Aichi Biodiversity Targets (Aichi Targets), which are included in the Strategic Plan, are organized under five Strategic Goals, and provide coherent guidance on how to achieve it. Halfway through the Strategic Plan, it is time to prioritize actions in order to achieve the best possible outcomes for the Aichi Targets in 2020. Actions to achieve one target may influence other targets (downstream interactions);in turn a target may be influenced by actions taken to attain other targets (upstream interactions). We explore the interactions among targets and the time-lags between implemented measures and desired outcomes to develop a framework that can reduce the overall burden associated with the implementation of the Strategic Plan. We identified the targets addressing the underlying drivers of biodiversity loss and the targets aimed at enhancing the implementation of the Strategic Plan as having the highest level of downstream interactions. Targets aimed at improving the status of biodiversity and safeguarding ecosystems followed by targets aimed at reducing the direct pressures on biodiversity and enhancing the benefits to all from biodiversity and ecosystem services, were identified as having the highest levels of upstream interactions. Perhaps one of the most challenging aspects of the Strategic Plan is the need to balance actions for its long-term sustainability with the need for urgent actions to halt biodiversity loss
    corecore