4,461 research outputs found

    The Fate of Injured Corticospinal Tracts in Patients with Intracerebral Hemorrhage: Diffusion Tensor Imaging Study

    Get PDF
    BACKGROUND AND PURPOSE: Little is known about the fate of the injured CST for a large number of patients with ICH. Using DTT, we investigated the longitudinal changes of injured CSTs in patients with an ICH

    Oxygen vacancy induced re-entrant spin glass behavior in multiferroic ErMnO3 thin films

    Full text link
    Epitaxial thin films of hexagonal ErMnO3 fabricated on Pt(111)/Al2O3(0001) and YSZ(111) substrates exhibited both ferroelectric character and magnetic ordering at low temperatures. As the temperature was reduced, the ErMnO3 films first showed antiferromagnetism. At lower temperatures, the films deposited at lower oxygen partial pressures exhibited spin glass behavior. This re-entrant spin glass behavior was attributed to competition between an antiferromagnetic interaction in the hexagonal geometry and a ferromagnetic interaction caused by a change in Mn valence induced by excess electrons from the oxygen vacancies.Comment: Published in Applied Physics Letter

    Production and optical properties of liquid scintillator for the JSNS2^{2} experiment

    Full text link
    The JSNS2^{2} (J-PARC Sterile Neutrino Search at J-PARC Spallation Neutron Source) experiment will search for neutrino oscillations over a 24 m short baseline at J-PARC. The JSNS2^{2} inner detector will be filled with 17 tons of gadolinium-loaded liquid scintillator (LS) with an additional 31 tons of unloaded LS in the intermediate γ\gamma-catcher and outer veto volumes. JSNS2^{2} has chosen Linear Alkyl Benzene (LAB) as an organic solvent because of its chemical properties. The unloaded LS was produced at a refurbished facility, originally used for scintillator production by the RENO experiment. JSNS2^{2} plans to use ISO tanks for the storage and transportation of the LS. In this paper, we describe the LS production, and present measurements of its optical properties and long term stability. Our measurements show that storing the LS in ISO tanks does not result in degradation of its optical properties.Comment: 7 pages, 4 figures

    Secure eHealth-Care Service on Self-Organizing Software Platform

    Get PDF
    There are several applications connected to IT health devices on the self-organizing software platform (SoSp) that allow patients or elderly users to be cared for remotely by their family doctors under normal circumstances or during emergencies. An evaluation of the SoSp applied through PAAR watch/self-organizing software platform router was conducted targeting a simple user interface for aging users, without the existence of extrasettings based on patient movement. On the other hand, like normal medical records, the access to, and transmission of, health information via PAAR watch/self-organizing software platform requires privacy protection. This paper proposes a security framework for health information management of the SoSp. The proposed framework was designed to ensure easy detection of identification information for typical users. In addition, it provides powerful protection of the user’s health information

    β-catenin activation down-regulates cell-cell junction-related genes and induces epithelial-to-mesenchymal transition in colorectal cancers

    Get PDF
    WNT signaling activation in colorectal cancers (CRCs) occurs through APC inactivation or β-catenin mutations. Both processes promote β-catenin nuclear accumulation, which up-regulates epithelial-to-mesenchymal transition (EMT). We investigated β-catenin localization, transcriptome, and phenotypic differences of HCT116 cells containing a wild-type (HCT116-WT) or mutant β-catenin allele (HCT116-MT), or parental cells with both WT and mutant alleles (HCT116-P). We then analyzed β-catenin expression and associated phenotypes in CRC tissues. Wild-type β-catenin showed membranous localization, whereas mutant showed nuclear localization; both nuclear and non-nuclear localization were observed in HCT116-P. Microarray analysis revealed down-regulation of Claudin-7 and E-cadherin in HCT116-MT vs. HCT116-WT. Claudin-7 was also down-regulated in HCT116-P vs. HCT116-WT without E-cadherin dysregulation. We found that ZEB1 is a critical EMT factor for mutant β-catenin-mediated loss of E-cadherin and Claudin-7 in HCT116-P and HCT116-MT cells. We also demonstrated that E-cadherin binds to both WT and mutant β-catenin, and loss of E-cadherin releases β-catenin from the cell membrane and leads to its degradation. Alteration of Claudin-7, as well as both Claudin-7 and E-cadherin respectively caused tight junction (TJ) impairment in HCT116-P, and dual loss of TJs and adherens junctions (AJs) in HCT116-MT. TJ loss increased cell motility, and subsequent AJ loss further up-regulated that. Immunohistochemistry analysis of 101 CRCs revealed high (14.9%), low (52.5%), and undetectable (32.6%) β-catenin nuclear expression, and high β-catenin nuclear expression was significantly correlated with overall survival of CRC patients (P = 0.009). Our findings suggest that β-catenin activation induces EMT progression by modifying cell-cell junctions, and thereby contributes to CRC aggressiveness

    Global metabolic interaction network of the human gut microbiota for context-specific community-scale analysis

    Get PDF
    A system-level framework of complex microbe-microbe and host-microbe chemical cross-Talk would help elucidate the role of our gut microbiota in health and disease. Here we report a literature-curated interspecies network of the human gut microbiota, called NJS16. This is an extensive data resource composed of ? 1/4570 microbial species and 3 human cell types metabolically interacting through >4,400 small-molecule transport and macromolecule degradation events. Based on the contents of our network, we develop a mathematical approach to elucidate representative microbial and metabolic features of the gut microbial community in a given population, such as a disease cohort. Applying this strategy to microbiome data from type 2 diabetes patients reveals a context-specific infrastructure of the gut microbial ecosystem, core microbial entities with large metabolic influence, and frequently produced metabolic compounds that might indicate relevant community metabolic processes. Our network presents a foundation towards integrative investigations of community-scale microbial activities within the human gut. ? The Author(s) 2017.113Ysciescopu

    Multiferroic properties of epitaxially stabilized hexagonal DyMnO3 thin films

    Full text link
    We fabricated epitaxial thin films of hexagonal DyMnO3, which otherwise form in a bulk perovskite structure, via deposition on Pt(111)//Al2O3 (0001) and YSZ(111) substrates: each of which has in-plane hexagonal symmetry. The polarization hysteresis loop demonstrated the existence of ferroelectricity in our hexagonal DyMnO3 films at least below 70 K. The observed 2.2 uC/cm^2 remnant polarization at 25 K corresponded to a polarization enhancement by a factor of 10 compared to that of the bulk orthorhombic DyMnO3. Interestingly, this system showed an antiferroelectric-like feature in its hysteresis loop. Our hexagonal DyMnO3 films showed an antiferromagnetic Neel temperature around 60 K and a spin reorientation transition around 40 K. We also found a clear hysteresis in the temperature dependence of the magnetization, which was measured after zero-field-cooling and field-cooling. This hysteresis may well have been of spin glass origin, which was likely to arise from the geometric frustration of antiferromagnetically-coupled Mn spins with an edge-sharing triangular lattice

    BKB_K using HYP-smeared staggered fermions in Nf=2+1N_f=2+1 unquenched QCD

    Full text link
    We present results for kaon mixing parameter BKB_K calculated using HYP-smeared improved staggered fermions on the MILC asqtad lattices. We use three lattice spacings (a0.12a\approx 0.12, 0.090.09 and 0.06  0.06\;fm), ten different valence quark masses (mms/10msm\approx m_s/10-m_s), and several light sea-quark masses in order to control the continuum and chiral extrapolations. We derive the next-to-leading order staggered chiral perturbation theory (SChPT) results necessary to fit our data, and use these results to do extrapolations based both on SU(2) and SU(3) SChPT. The SU(2) fitting is particularly straightforward because parameters related to taste-breaking and matching errors appear only at next-to-next-to-leading order. We match to the continuum renormalization scheme (NDR) using one-loop perturbation theory. Our final result is from the SU(2) analysis, with the SU(3) result providing a (less accurate) cross check. We find BK(NDR,μ=2GeV)=0.529±0.009±0.032B_K(\text{NDR}, \mu = 2 \text{GeV}) = 0.529 \pm 0.009 \pm 0.032 and B^K=BK(RGI)=0.724±0.012±0.043\hat{B}_K =B_K(\text{RGI})= 0.724 \pm 0.012 \pm 0.043, where the first error is statistical and the second systematic. The error is dominated by the truncation error in the matching factor. Our results are consistent with those obtained using valence domain-wall fermions on lattices generated with asqtad or domain-wall sea quarks.Comment: 37 pages, 31 figures, most updated versio

    Small intestinal eosinophils regulate Th17 cells by producing IL-1 receptor antagonist

    Get PDF
    Eosinophils play proinflammatory roles in helminth infections and allergic diseases. Under steady-state conditions, eosinophils are abundantly found in the small intestinal lamina propria, but their physiological function is largely unexplored. In this study, we found that small intestinal eosinophils down-regulate Th17 cells. Th17 cells in the small intestine were markedly increased in the Delta dblGATA-1 mice lacking eosinophils, and an inverse correlation was observed between the number of eosinophils and that of Th17 cells in the small intestine of wild-type mice. In addition, small intestinal eosinophils suppressed the in vitro differentiation of Th17 cells, as well as IL-17 production by small intestinal CD4(+) T cells. Unlike other small intestinal immune cells or circulating eosinophils, we found that small intestinal eosinophils have a unique ability to constitutively secrete high levels of IL-1 receptor antagonist (IL-1Ra), a natural inhibitor of IL-1 beta. Moreover, small intestinal eosinophils isolated from IL-1Ra-deficient mice failed to suppress Th17 cells. Collectively, our results demonstrate that small intestinal eosinophils play a pivotal role in the maintenance of intestinal homeostasis by regulating Th17 cells via production of IL-1Ra.open111815sciescopu
    corecore