15 research outputs found

    VPLYV AGROTECHNICKÝCH ZÁSAHOV NA SEZÓNNE ZMENY OBSAHU ANORGANICKÉHO DUSÍKA V PÔDE

    Get PDF
    We researched the influence of soil cultivation and fertilization on changes of nitrate, ammonium and inorganic nitrogen content in soil during the monitored vegetation periods (2004/2005 – 2005/2006). This experiment was realized on experimental bases of Slovak University of Agriculture in Nitra – Dolná Malanta on the winter/summer wheat (Triticum aestivum), variety Bonita, with red clover as its before-crop. In the field trial we used two types of tillage, B1 – conventional tillage up to the depth of 0,25 m and B2 – disc ploughing up to 0,15 m, with three variants of fertilization, 0 – unfertilized control, PH – fertilization according to its content in soil and PZ – fertilization according to its content in soil + plough down of post harvest residues. Samples of the soil were taken from the two soil depth (0,0- 0,3 m and 0,3-0,6 m) and in each vegetation period there were 8 takings of soil samples in four repetitions. During monitored vegetation period this dynamics was changeable. The content of nitrate nitrogen in the soil in autumn was about 40 % higher than content of ammonium nitrate. This tendency changed in spring, when the average content of ammonium nitrogen was higher than the content of nitrate nitrogen on average about 60 %. The cultivation had significant influence on dynamics of inorganic nitrogen. The average content of inorganic nitrogen in conventional tillage up to the depth of 0,25 m was 8,43 mg.kg-1 and in disc ploughing it was 7,60 mg.kg-1. The influence of fertilization on changes of inorganic nitrogen was significantly important. Monitored ways of fertilization within the content of nitrates in the soil had the following averages: in unfertilized soil 7,48 mg.kg-1, in fertilized soil NPK 8,20 mg.kg-1 and in the soil fertilized with plough down of post harvest residues 8,37 mg.kg-1. In the first and second variety of soil cultivation we found out a low increase of average concentration of nitrates in the fertilized soil in comparison with unfertilized one. High significant influence on dynamics of nitrate nitrogen in the soil had date of sample takings and also depth. In the first depth (0,0-0,3 m) the level of nitrate nitrogen was 9,18 mg.kg-1 and in the second depth (0,3-0,6 m) it was 6,85 mg.kg-1.V práci bola sledovaná dynamika obsahu anorganických foriem dusíka v pôde pod pšenicou letnou f. ozimnou, v priebehu dvoch po sebe nasledujúcich vegetačných období (2004/2005 a 2005/2006), na výskumno-experimentálnej báze Slovenskej poľnohospodárskej univerzity v Nitre – Dolná Malanta. V pokuse boli použité dva spôsoby obrábania pôdy ( B1 - stredne hlboká orba do 0,25 m, B2 – tanierovanie), tri varianty hnojenia (0 – bez hnojenia, kontrolný variant, PH – priemyselné hnojivá a PH + ZV – priemyselné hnojivá so zapracovaním pozberových zvyškov predplodiny). Vzorky pôdy boli odoberané z dvoch hĺbok pôdy (0,0-0,3 m a 0,3-0,6 m), pričom v každom vegetačnom období bolo realizovaných 8 odberov pôdnych vzoriek v štyroch opakovaniach. Počas nášho sledovaného vegetačného obdobia bola táto dynamika premenlivá. Dusičnanová forma dusíka v pôde v jesenných mesiacoch tvorila vyšší obsah v priemere o 40 % viac ako amónna forma. Tento trend sa však zmenil v jarných a letných mesiacoch, kedy priemerný obsah amónneho dusíka bol vyšší ako dusičnanový dusík v priemere o 60%. Obrábanie malo na dynamiku Nan vysoko preukazný vplyv. Pri obrábaní pôdy stredne hlbokou orbou do 0,25 m (variant B1) bola priemerná koncentrácia anorganického dusíka 8,43 mg.kg-1 a pri tanierovaní (variant B2) 7,60 mg.kg-1. Vplyv hnojenia na zmeny koncentrácie Nan bol štatisticky vysoko preukazný. Sledované spôsoby hnojenia v rámci obsahu dusičnanov v pôde zaznamenali nasledovné priemery: v nehnojenej pôde 7,48 mg.kg-1 , hnojenie NPK 8,20 mg.kg-1 a v pôde hnojenej so zaoraním pozberových zvyškov 8,37 mg.kg-1. V prvom aj v druhom variante obrábania pôdy sme zaznamenali mierny nárast priemerných koncentrácií Nan v hnojenej pôde proti nehnojenej kontrole. Vysoko preukazný vplyv na dynamiku dusičnanového dusíka v pôde mali aj termíny odberov pôdnych vzoriek ako aj hĺbka

    Influence of the fractional composition of humus substances on the proportion of water-resistant aggregates

    Get PDF
    In this study, the influence of humus substances on soil structure of six soils (Haplic Chernozem, Mollic Fluvisol, Eutric Fluvisol, Rendzic Leptosol, Eutric Cambisol, and Haplic Luvisol) of different ecosystems (forest, meadow, urban, and agro-ecosystem)in Slovakia was compared. The influence of the fractional composition of humus substances on the proportion of the fractions of water-resistant aggregates in different ecosystems was assessed. The fractions of free humic acids and those bound with monovalent cations and mobile R2O3 (r = 0.387; P urban ecosystem > meadow ecosystem > forest ecosystem

    Dragonflies (Odonata) of Botanical Garden‘s Pond of SUA in Nitra

    Get PDF
    Article Details: Received: 2019-09-09 | Accepted: 2019-11-12 | Available online: 2019-12-31 https://doi.org/10.15414/afz.2019.22.04.110-113The faunistic research of dragonflies was realized during 2016 and 2017. The research was carried out under the conditions of Botanical garden‘s pond of Slovak University of Agriculture (SUA) in Nitra. 229 dragonfly individuals (105♂, 124♀) were trapped during the monitored period. Trapped individuals represented 10 species and 3 families of dragonflies. The aim of the research was to determine the species composition of dragonflies of the selected locality. Based on the representation of individual species for the monitored locality, its dominance was also calculated.Keywords: dragonflies, Odonata, bioindicator, habitat, pond, dominance, climate change References ASKEW, R. R. (1988) The dragonflies of Europe. Colchester: Harley Books. 291 p.BERACKO, P. et al. (2017) Bentic invertebrates and its habitats. Bratislava: Faculty of Natural Sciences of Commenius university, 291 p. (in Slovak).BUTLER, R. G. and DE MAYNADIER, P. G. (2008) The significance of littoral and shoreline habitat integrity to the conservation of lacustrine damselflies (Odonata). In Journal of Insect Conservation, vol. 12, pp. 23–36.CORBET, P. S. (1999) Dragonflies: behavior and ecology of Odonata. New York: Cornell University Press, 829 p.DALECKÝ, V. (2011) Influence of landscape structure on bionomics of forest species of reophilic dragonflies. Bachelor thesis. Brno: Mendel University. 63 p. (in Czech).DAVID, S. (2013) Annotated Checklist of dragonflies (Odonata), Slovakia. In BRYJA, J. (eds.): Zoological days. Brno 2013: Abstracts from the conference. Brno: Mendel University, pp. 1–52.DAVID, S. and ÁBELOVÁ, M. (2015) Dragonflies (Odonata) of the Protected Area Mlyňany Arboretum. In Folia faunistica Slovaca, vol. 20, no. 2, pp. 135–139.DIJKSTRA, K. D. B. and LEWINGTON, R. (2006) Field guide to the dragonflies of Britain and Europe including western Turkey and north-western Africa. London: British Wildlife Publishing, 320 p.FAŠKO, P. and ŠŤASTNÝ, P. (2002) Average annual rainfall. In Zaťko, M. (eds.) Initial landscape structure. Atlas of the Slovak Republic. Banská Bystrica: Ministry of the Environment of Slovak Republic, Slovak Agency of Environment, 344 p. (in Slovak).FOOTE, A. L. and HORNUNG, C. L. R. (2005) Odonates as biological indicators of grazing effects on Canadian prairie wetlands. In Ecological Entomology, vol. 30, pp. 273–283.HANEL, L. and ZELENÝ, J. (2000) Dragonflies (Odonata): research and protection. Vlašim: Czech Union for Nature Conservation, 240 p. (in Czech).HARABIŠ, F. and  DOLNÝ, A. (2010) Ecological factors determining the density-distribution of Central European dragonflies (Odonata). In European Journal of Entomology, vol. 107, pp. 571–577.HEIDEMANN, H. and SEIDENBUSCH, R. (1993) Die Libellenlarven Deutschlands und Frankreichs. Handbuch für Exuviensammler. Keltern: Verlag Erna Bauer Keltern, 391 p.HOLUŠA, O. and VANĚK, J. (2008) Fauna of Dragonfies (Odonata) Krkonoš. In Opera Corcontica, vol. 45, pp. 81–98 (in Czech).HOLUŠA, O. (2013) Taxonomy, ecology and zoogeography of Cordulegaster dragonflies (Odonata: Corgulegastridae) in Central Europe. Dissertation thesis. Bratislava: Commenius University, 179 p. (in Slovak).HREŠKO, J. et al. (2006) Nitra and its surroundings – Initial phase of research. Scientific Monograph. Nitra: Constantine the Philosopher University, 182 p. (in Slovak).KOHL, S. (1998) Odonata. Anisoptera – Exuvien (Grosslibellen-Larvenhäute) Europas. Bestimmungsschlüssel. Berlin: Kohl. 27 p.LAMBECK, R. J. (1997) Focal species: A multispecies umbrella for nature conservation. In Conservation Biology. vol. 11, no. 4, pp. 849–856.LOSOS, B. (1992) Exercise of animal ecology. Brno: Masaryk University, 229 p.NOSS, R.F. (1990) Indicators of monitoring biodiversity: A hierarchical approach. In Conservation Biology, vol. 4, pp. 355–364.OLBERG, R.M. et al. (2000) Prey Pursuit and Inception in Dragonflies. In Journal of Comparitive Physiology A: Sensory Neural and Behavioral physiology, vol. 186, pp. 155–162.SAHLÉN, G. and EKESTUBBE, K. (2001) Identification of dragonflies (Odonata) as indicators of general species richness in boreal forest lakes. In Biodiversity and Conservation, vol. 10, pp. 673–690.ŠÁCHA, D. et al. (2007) Dragonflies of Slovak Republic. [Online]. Retrieved 2019-03-20 from http://www.vazky.sk, 10/2008 (in Slovak).ŠÁCHA, D. et al. (2008) The key to identifying our species of dragonflies. [Online]. Retrieved 2019-05-12 from http://www. vazky.sk (in Slovak).ŠÁCHA, D. 2010. Dragonflies (Odonata) detected during „Monitoring of species of European importance“ in southern Slovakia. In Folia faunistica Slovaca, vol. 15, no. 6, pp. 43–46 (in Slovak).SIMAIKA, P. and SAMWAYS, M. J. (2008) Valuing dragonflies as service providers. In Córdoba-Aguilar A. (eds.): Dragonflies: Model Organisms for Ecological and Evolutionary Research. Oxford: Oxford University Press, pp. 23–55.TISCHLER, W. (1949) Basic features of terrestrial animal ecology. Wiesbaden: Springer trade media, 220 p. (in German).WASSCHER, M. T. and BOS, F. G. (2000) The European dragonflies: notes on the checklist and on species diversity. In Odonatologica, vol. 29, pp. 31–43.WILDERMUTH, H. (2001) The rotation model for the care of small bog waters. In Conservation and Landscape Planning, vol. 33, pp. 269–273 (in German).

    VPLYV AGROTECHNICKÝCH ZÁSAHOV NA SEZÓNNE ZMENY OBSAHU ANORGANICKÉHO DUSÍKA V PÔDE

    Get PDF
    We researched the influence of soil cultivation and fertilization on changes of nitrate, ammonium and inorganic nitrogen content in soil during the monitored vegetation periods (2004/2005 – 2005/2006). This experiment was realized on experimental bases of Slovak University of Agriculture in Nitra – Dolná Malanta on the winter/summer wheat (Triticum aestivum), variety Bonita, with red clover as its before-crop. In the field trial we used two types of tillage, B1 – conventional tillage up to the depth of 0,25 m and B2 – disc ploughing up to 0,15 m, with three variants of fertilization, 0 – unfertilized control, PH – fertilization according to its content in soil and PZ – fertilization according to its content in soil + plough down of post harvest residues. Samples of the soil were taken from the two soil depth (0,0- 0,3 m and 0,3-0,6 m) and in each vegetation period there were 8 takings of soil samples in four repetitions. During monitored vegetation period this dynamics was changeable. The content of nitrate nitrogen in the soil in autumn was about 40 % higher than content of ammonium nitrate. This tendency changed in spring, when the average content of ammonium nitrogen was higher than the content of nitrate nitrogen on average about 60 %. The cultivation had significant influence on dynamics of inorganic nitrogen. The average content of inorganic nitrogen in conventional tillage up to the depth of 0,25 m was 8,43 mg.kg-1 and in disc ploughing it was 7,60 mg.kg-1. The influence of fertilization on changes of inorganic nitrogen was significantly important. Monitored ways of fertilization within the content of nitrates in the soil had the following averages: in unfertilized soil 7,48 mg.kg-1, in fertilized soil NPK 8,20 mg.kg-1 and in the soil fertilized with plough down of post harvest residues 8,37 mg.kg-1. In the first and second variety of soil cultivation we found out a low increase of average concentration of nitrates in the fertilized soil in comparison with unfertilized one. High significant influence on dynamics of nitrate nitrogen in the soil had date of sample takings and also depth. In the first depth (0,0-0,3 m) the level of nitrate nitrogen was 9,18 mg.kg-1 and in the second depth (0,3-0,6 m) it was 6,85 mg.kg-1.V práci bola sledovaná dynamika obsahu anorganických foriem dusíka v pôde pod pšenicou letnou f. ozimnou, v priebehu dvoch po sebe nasledujúcich vegetačných období (2004/2005 a 2005/2006), na výskumno-experimentálnej báze Slovenskej poľnohospodárskej univerzity v Nitre – Dolná Malanta. V pokuse boli použité dva spôsoby obrábania pôdy ( B1 - stredne hlboká orba do 0,25 m, B2 – tanierovanie), tri varianty hnojenia (0 – bez hnojenia, kontrolný variant, PH – priemyselné hnojivá a PH + ZV – priemyselné hnojivá so zapracovaním pozberových zvyškov predplodiny). Vzorky pôdy boli odoberané z dvoch hĺbok pôdy (0,0-0,3 m a 0,3-0,6 m), pričom v každom vegetačnom období bolo realizovaných 8 odberov pôdnych vzoriek v štyroch opakovaniach. Počas nášho sledovaného vegetačného obdobia bola táto dynamika premenlivá. Dusičnanová forma dusíka v pôde v jesenných mesiacoch tvorila vyšší obsah v priemere o 40 % viac ako amónna forma. Tento trend sa však zmenil v jarných a letných mesiacoch, kedy priemerný obsah amónneho dusíka bol vyšší ako dusičnanový dusík v priemere o 60%. Obrábanie malo na dynamiku Nan vysoko preukazný vplyv. Pri obrábaní pôdy stredne hlbokou orbou do 0,25 m (variant B1) bola priemerná koncentrácia anorganického dusíka 8,43 mg.kg-1 a pri tanierovaní (variant B2) 7,60 mg.kg-1. Vplyv hnojenia na zmeny koncentrácie Nan bol štatisticky vysoko preukazný. Sledované spôsoby hnojenia v rámci obsahu dusičnanov v pôde zaznamenali nasledovné priemery: v nehnojenej pôde 7,48 mg.kg-1 , hnojenie NPK 8,20 mg.kg-1 a v pôde hnojenej so zaoraním pozberových zvyškov 8,37 mg.kg-1. V prvom aj v druhom variante obrábania pôdy sme zaznamenali mierny nárast priemerných koncentrácií Nan v hnojenej pôde proti nehnojenej kontrole. Vysoko preukazný vplyv na dynamiku dusičnanového dusíka v pôde mali aj termíny odberov pôdnych vzoriek ako aj hĺbka

    Evaluation of the concentration of inorganic forms of nitrogen and phosphorus under the forest ecosystem of the Čaradický stream

    Get PDF
    Cieľom práce bolo hodnotenie koncentrácie dusičnanového, amónneho a dusitanového dusíka, celkového a fosforečnanového fosforu vo vode odoberanej v rokoch 2005-2010 pod lesným ekosystémom Čaradického potoka. Priemerná koncentrácia N-NO3- za celé sledované obdobie bola 1,76 mg*dm-3. Jeho najvyššie priemerné koncentrácie vo všetkých sledovaných rokoch boli spravidla v zimnom období. Priemerná koncentrácia amónneho dusíka za celé sledované obdobie bola 0,14 mg*dm-3. Minimálne priemerné koncentrácie za celé sledované obdobie sa zaznamenali v zimnom období a maximálne v letnom a jesennom období. Priemerná koncentrácia dusitanového dusíka za celé sledované obdobie bola 0,025 mg*dm-3. V závislosti od času odberu jeho najnižšia priemerná koncentrácia sa zaznamenala v mesiaci január a najvyššia v mesiacoch jún a september. Priemerná koncentrácia celkového fosforu pod lesným ekosystémom vodného toku Čaradický potok za celé sledované obdobie reprezentovala 0,676 mg*dm-3. Jeho najnižšia priemerná hodnota za celé sledované obdobie sa zaznamenala v mesiaci február a najvyššia v mesiaci november. Priemerná koncentrácia P-PO43- za celé sledované obdobie bola 0,203 mg*dm-3. Jeho najnižšia priemerná koncentrácia v závislosti od času odberu sa zistila v mesiaci január a najvyššia v mesiaci august.The aim of this study was to evaluate of concentrations of nitrate, ammonium and nitrite nitrogen, total and phosphate phosphorus under the forest ecosystem Čaradice stream during 2005-2010. The average concentration of N-NO3- for the whole of the monitored period was 1.76 mg*dm-3. Its highest average concentrations in all monitored years were generally in the winter. The average concentration of ammonia nitrogen during the whole monitored period was 0.14 mg*dm-3. Minimum average concentrations over the entire observed period were recorded in the winter period and maximum during the summer and autumn periods. The average nitrite nitrogen concentration over the entire monitored period was 0.025 mg*dm-3. Depending on the time of collection, its lowest average concentration was recorded in January and the highest in June and September. The average total phosphorus concentration under the forest ecosystem of the Čadadický stream for the whole monitored period was 0.676 mg*dm-3. Its lowest average value for the whole reporting period was recorded in February and the highest in November. The average concentration of P-PO43- for the whole reference period was 0.203 mg*dm-3. Its lowest average concentration, depending on the collection time, was found in January and the highest in August

    OCCURRENCE OF SPECIES FAMILY CARABIDAE (COLEOPTERA) INDEPENCE ON THE INPUT OF ORGANIC MATTER INTO SOIL

    Get PDF
    Cieľom práce bolo zistiť vplyv rôznych dávok organických hnojív (maštaľného hnoja a biokalu) na výskyt pôdneho edafónu s dôrazom na druhy čeľade Carabidae. Počas rokov 2001 až 2003 sa metódou zemných pascí realizovali zbery pôdneho edafónu. Zbery sa uskutočnili v Kolíňanoch s celkovou plochou územia 9 000 m2, na piatich variantoch (1. variant - nehnojená kontrola; 2. variant - 25 t maštaľného hnoja.ha-1; 3. variant – 50 t.ha-1 biokalu; 4. variant – 50 t.ha-1 maštalného hnoja; 5. variant – 100 t .ha-1 biokalu). Na uvedených piatich variantoch sa získalo 59 054 exemplárov pôdneho edafónu, patriacich do 23 skupín. Do modelovej čeľade Carabidae patrilo 21 189 jedincov, v rámci ktorých bolo determinovaných 25 druhov. Hodnoty druhovej identity podľa Jaccarda (IA) sa pohybovali od 45,45 do 71,43 % a hodnoty identity dominancie (ID) boli v intervale od 94,20 do 97,72 %. Hodnoty diverzity (d) dosiahli 0,5406 až 0,8986. K dominantným druhom možno zaradiť druh Harpalus rufipes (De Geer, 1774), ktorý sa vyskytuje na suchých až polovlhkých, prevažne svetlých stanovištiach. Hodnoty jednotlivých variantov sú ovplyvňované množstvom inputov organickej hmoty do pôdy, ktorá má vplyv pri formovaní vyhranených spoločenstiev s charakteristickou druhovou skladbou. Pri porovnávaní jednotlivých variantov vo vzťahu k výskytu zooedafónu sa najlepšie prejavil variant hnojený biokalom v dávke 100 t.ha-1.The aim of this work was to investigate the effects of different rates of organic fertilizers (farmyard manure and bio sludge) on occurrence of soil organisms with focus to species of family Carabidae. During 2001-2003, samples of biological material were collected using the earth trap method. Samples were taken from five treatments (i) unfertilized, (ii) 25 t ha-1 farmyard manure, (iii) 50 t ha-1 bio sludge, (iv) 50 t ha-1 farmyard manure, (v) 100 t ha-1 bio sludge) which cover area of 9 000 m2 at experimental farm of Slovak Agricultural University Kolíňany. Totally 59 054 individuals of soil edaphon belong to 23 epigeic groups was collected from which 25 species totally 21 189 individuals belong to the target group Carabidae. The attributes of specific identity according Jaccard (IA) ranged from 45.45 to 71.43 % and those of dominant identity (ID) from 94.20 to 97.72 %. The attributes of diversity (d) achieved a level from 0.5406 to 0.8986. Harpalus rufipes (De Geer, 1774) occurring on arid to damp soil, mostly in light places, was determined as the dominant species. The attributes of individual treatments are influenced by the quantity of organic mater inputs into soil that affects the formation of well-defined communities with the characteristic species composition. A comparison of individual treatments in terms of the occurrence of zooedaphon showed that application of 100 t ha-1 bio sludge create the most suitable soil condition for zooedaphon development

    THE EFFECT OF AGROTECHNICAL INTERVENTIONS ON SEASONAL CHANGES OF INORGANIC NITROGEN CONTENT IN THE SOIL

    No full text
    We researched the influence of soil cultivation and fertilization on changes of nitrate, ammonium and inorganic nitrogen content in soil during the monitored vegetation periods (2004/2005 – 2005/2006). This experiment was realized on experimental bases of Slovak University of Agriculture in Nitra – Dolná Malanta on the winter/summer wheat (Triticum aestivum), variety Bonita, with red clover as its before-crop. In the field trial we used two types of tillage, B1 – conventional tillage up to the depth of 0,25 m and B2 – disc ploughing up to 0,15 m, with three variants of fertilization, 0 – unfertilized control, PH – fertilization according to its content in soil and PZ – fertilization according to its content in soil + plough down of post harvest residues. Samples of the soil were taken from the two soil depth (0,0- 0,3 m and 0,3-0,6 m) and in each vegetation period there were 8 takings of soil samples in four repetitions. During monitored vegetation period this dynamics was changeable. The content of nitrate nitrogen in the soil in autumn was about 40 % higher than content of ammonium nitrate. This tendency changed in spring, when the average content of ammonium nitrogen was higher than the content of nitrate nitrogen on average about 60 %. The cultivation had significant influence on dynamics of inorganic nitrogen. The average content of inorganic nitrogen in conventional tillage up to the depth of 0,25 m was 8,43 mg.kg-1 and in disc ploughing it was 7,60 mg.kg-1. The influence of fertilization on changes of inorganic nitrogen was significantly important. Monitored ways of fertilization within the content of nitrates in the soil had the following averages: in unfertilized soil 7,48 mg.kg-1, in fertilized soil NPK 8,20 mg.kg-1 and in the soil fertilized with plough down of post harvest residues 8,37 mg.kg-1. In the first and second variety of soil cultivation we found out a low increase of average concentration of nitrates in the fertilized soil in comparison with unfertilized one. High significant influence on dynamics of nitrate nitrogen in the soil had date of sample takings and also depth. In the first depth (0,0-0,3 m) the level of nitrate nitrogen was 9,18 mg.kg-1 and in the second depth (0,3-0,6 m) it was 6,85 mg.kg-1

    Fluctuation of families of Coleoptera population depending on the application of organic fertilizers

    No full text
    Received: 2016-03-15 | Accepted: 2016-05-05 | Available online: 2016-12-22http://dx.doi.org/10.15414/afz.2016.19.04.150-156The aim of this work was to evaluate the impact of application of defined doses of organic fertilizers (manure and biosludge) to the occurrence of family of Coleopterafaun, during six years long period 2004-2009. Experiment was realized on the locality Kolíňany, by the earth traps method, which were exposed in the five treatments (1st treatment- control treatments ; 2nd treatments- 25 t ha - 1 of the manure ; 3rd treatment- 50 t ha- 1 of biosludge; 4th treatment- 50 t ha - 1 of the manure; 5th treatment- 100 t  ha- 1 of biosludge). Every year the traps were exposed in different crops: 2004- Helianthus annuus; 2005– Beta vulgaris; 2006- Zea mays; 2007- Beta vulgaris; 2008 - Hordeum vulgare; 2009 - Helianthus annuus. Altogether there were trapped 60,406 exemplars of Coleopterafaun, that from taxonomic point of view belonging to the 16 families. The year, temperature and precipitation had positive impact on the incidence of families in the year 2009, when we obtained 18,436 ex and in the year 2008, when we found 15,201 ex. Abundance of exemplars during other studied years was significantly lower. Statistical evaluation of the impact of year on an occurrence of families showed significantly (P = 0.05-0.01) for families Anthicidae, Chrysomelidae, Cryptophagidae, Elateridae and Staphylinidae. The statistical evidence was not reflected (P>0.05) for families Carabidae, Coccinelidae, Curculionidae, Dermestidae, Histeridae, Lathridiidae, Liodidae, Nitidulidae, Ptiliidae, Scarabaeidae and Silphidae. In assessment of impact of the year have an important role climatic factors (temperature and precipitation). Impact of temperature and precipitation recorded evidence for families Anthicidae, Chrysomelidae, Elateridae, Staphylinidae. Other families showed no statistically evidence of impact of climatic factors temperature and precipitation. In evaluating of impact of treatment on evidence of families of Coleopterafaun as the most suitable was 1st treatment- control treatment (13,574 ex), 3rd treatment - 50 t ha-1 of biosludge (13,318 ex) then 2nd treatment - 25 t ha-1 of the manure (12,286 ex), 5th treatment - 100 t ha-1 of biosludge (10,904 ex) and 4th treatment - 50 t ha-1 of the manure (10,324 ex). Based on the statistical evaluation the impact of treatment on occurrence of families was not reflected and all values were insignificant (P>0.05). Eudominant representation showed within all treatments and years the family Carabidae, with dominance from 95.53 to 98.32 %. When we comparing the similarity of treatments the values of species identity by Jaccard (IA) ranged from 75.00 to 100.00 % and values of identity of dominance (ID) ranged from 93.71 to 97.58 %. We can conclude that realized anthropogenic inputs does not negatively affect occurrence of present geobiocoenosis.Keywords: biodiversity, bio sludge, Carabidae, epigeic group, family, manureReferencesBARANOVÁ, B. et al. (2013) Ground beetle (Coleoptera: Carabidae) community of arable land with different crops. Folia faunistica Slovaca. vol. 18. no. 1, pp.21-29.BOHÁČ, J. (2005). The Beatles – Carabidae. In Kučera, T. The Red book habitats. [Online]. Retrieval July 30, 2005 from http://www.usbe.cas.cz/cervenakniha/texty/GONGALSKY, K.B. and CIVIDANES, F.J. (2008) Distribution of carabid beetles in agroecosystems across spatial scales - A review. Baltic J. Coleopterol., vol. 8, no. 1, pp.15-30.CHABERT, A. and BEAUFRETON, CH. (2005) Impact de Quelques culturales sur les Carabes, Araignees, Staphylins. AFPP – 7e Conference Internationale sur les ravageurs en agriclture Montpellier, pp. 1-10.KUJAWA, K., SOBCZYK, D. and KAJAK, A. (2006) Dispersal of Harpalus rufipes (DeGeer) (Carabidae) between shlterbelt and cereal field. Polish Journal of Ecology, vol. 54, no. 2, pp. 243-252.KVASNIČÁK, R. and DRDUL, J. (2004) Community of beetles (Coleoptera) of a meadow biotop near the Krupský brook (SW Slovakia). Acta Fac. Pedag. Univers. Tyrnaviensis – Seria B, pp.4-10.LENGERKEN, V. and HANNS, V. (1983) Biologie der Tiere Deutschlands-Coleoptera. Praha: Institute of Entomology. 40 p.NIETUPSKI, M., KOSEWSKA, A. and LEMKOWSKA, B. (2015) Grasslands with calcareous gyttja soil in the Olsztyn Lake Districk as specific habitats for ground beetles (Coeleoptera: Carabidae). Baltic J. Coleopterol, vol. 15, no. 1, pp. 57-70. doi:http://dx.doi.org/10.14411/eje.2014.088PETERKOVÁ, V. (2014) Ecological factors affecting communities beetles. Scientific monograph, Trnava: Trnavská univerzita. 84 p. (in Slovak).PETŘVALSKÝ, V. et al. (2007) Occurrence of elementary epigeic groups in dependence on the organic matter. Acta Facultatis Ecologiae, vol. 15, pp. 15-19.PORHAJAŠOVÁ, J. et al. (2009) Biodiversity of epigeic groups in the Nature Reserve of Alúvium Žitavy. Acta fyt. et zoot., vol. 12, no. 2, pp. 52-57.PORHAJAŠOVÁ, J. and ŠUSTEK, Z. (2011) The spatial structure of invertebrate communities with a focus on family Carabidae in the Nature Reserve Žitavský luh. Scientific monograph, Nitra: SPU. 77 p. (in Slovak).PORHAJAŠOVÁ, J. et al. (2013) The effect of application of organic fertilizers on the dynamics of occurence of carabid species (Carabidae, Coleoptera). JCEA, vol 14, no. 2. pp. 251-272.PORHAJAŠOVÁ, J. et al. (2014) Dynamics of occurrence of dominant species Pseudoophonus rufipes (De Geer, 1774) and Poecilus cupreus L., 1758 depending on the aplication of organic matter into the soil. Acta fyt. et zoot., vol. 17, no. 1. doi:http://dx.doi.org/10.15414/afz.2014.17.01.30-35POVOLNÝ, D. and ŠUSTEK, Z. (1995) Some reflections on livestock synanthropy and their manifestations in model groups. Acta Univ. Agriculturae, vol. XXXIII, no. 1.REPA, Š. and ŠIŠKA, B. (2004).The climatic characteristics of the year 2003 in Nitra. Nitra: SPU. 24 p. (in Slovak).SCHWERK, A. and DYMITRYSZYN, I. (2015). Epigeic and soil carabid fauna (Coleoptera: Carabidae) in relation to habitat differentiation of an insulated semi-natural habitat in Western Poland. Baltic J. Coleopterol., vol. 15, no. 1, pp. 47-56.ŠIŠKA, B. and ČIMO, J. (2006) Weather conditions of years 2004 and 2005 in Nitra. Nitra: SPU. 50 p. (in Slovak).ŠPÁNIK, F. et al. (2000) Agroclimatic rajonization characteristics of agricultural production in Slovakia in conditions of weather changes Štúdia SBKS SAV, vol. XVII, vol. no, 54 p.THOMAS, C.F.G., HOLLAND, J.M. and BROWN, N.J. (2002) The spatial distribution of carabid beetles in agricultural landscapes. In Holland J. M. (Ed.) : The Agroecology of Carabid Beetles. Intercept Limited, Andover, pp. 305-344.VARVARA, M. (2010) The genus Carabus (Coleoptera: Carabidae) in some poteto crops from Romania, 1978-1999. Muzeul Olteniei Craiova. Oltenie. Studii si comunicari. Stiintele Naturii, vol. 26, no. 2, pp.137-146.VICIAN, V. et al. (2015) The influence of agricultural management on the structure of ground beetle (Coleoptera: Carabidae) assemblages. Biologia (Bratislava), vol. 70, no. 2, pp. 240-251. doi: http://dx.doi.org/10.15415/biolog-2015-0028VRÁBELOVÁ, M. and MARKECHOVÁ, D. (2001) Probability and Statistics. Nitra: SPU. 199 p.Weather condition of the years 2007, 2008 and 2009 – unpublished materials. Nitra: SPU.WOODCOCK, B.A. et al. (2010) Impact of habitat type and landscape structure on biomass, species richness and functional diversity of ground beetles. Agriculture, Ecosystems and Environment, vol. 139, no. 1-2, pp. 181-186. doi:http://dx.doi.org/0.1016/j.agee.2010.07.018

    Dragonflies (Odonata) of the Nature Reserve Torozlín and water area Štrkáreň gravel-pit in the southwestern part of the Slovak Republic

    No full text
    Received: 2016-04-19 | Accepted: 2016-06-05 | Available online: 2017-09-30http://dx.doi.org/10.15414/afz.2017.20.03.49-53Over the period of the years 2014 and 2015 in the locality of nature reserve Torozlín and water area Štrkáreň gravel-pit being located at the village Komjatice, lying in the southwestern part of the Podunajská pahorkatina upland was evaluated the species of dragonflies. 179 individuals of dragonflies were collected during the monitoring period, of which 13 species were determined as belonging to eight families. On the locality of the Torozlin Nature Reserve, the dominant species were Ischnura elegans (37.50%), Platycnemis pennipes (28.85 %), Sympetrum vulgatum (10.58 %), Sympetrum sanguineum (5.76 %) and Platycnemis pennipes (54.67 % Ischnura elegans (37.33 %) and Libellula depressa (5.34 %). Based on the fact that the Torozlin site has a marshy character, the species composition was more varied. Protection and vulnerability were assessed by the Red List of IUCN, the European Red List of dragonflies and the Red List of dragonflies of the Slovak Republic. Evaluation of protection was carried out under the Decree of the Ministry of Environment of the Slovak Republic No. 492/2006 Collection of Laws. For individual species found also their dominance was calculated.Keywords: dragonflies, locality, nature reserve, dominance, SlovakiaReferences ASKEW, R.R. (1988) The dragonflies of Europe. Colchester: Harley Books. 291 p.DAVID, S. (2001) Red (ekosozological) list of dragonflies (Insecta: Odonata) Slovakia. In BALÁŽ, D., MARHOLD, K. and URBAN, P.(Ed.): Red list of plants and animals of Slovakia. Nature protection, 20 (Suppl.),  pp. 96–99.DAVID, S. (2005) The research results of dragonflies (Odonata) in the Slovak Republic. In Ochrana prírody, vol. 24, pp. 168-187 (in Czech).DAVID, S. (2006) Dragonflies (Odonata) of selected water habitats. In HREŠKO, J., PUCHEROVÁ, Z. and BALÁŽ, I. (eds.): Landscape Nitra and its surroundings. The initial stage of research. Nitra: UKF. 182 p. (in Slovak).DAVID, S. (2013) Annotated Checklist of dragonflies (Odonata), Slovakia. In BRYJA, J., ŘEHÁK, J. and ZUKA, J. (eds.): Zoological days Brno 2013. Abstracts from the conference. Brno: Mendelova univerzita. 242 p.DAVID, S. and ÁBELOVÁ, M. (2015) Dragonflies (Odonata) of the Protected Area Mlyňany Arboretum. Folia faunistica Slovaca, vol. 20, no. 2, pp. 135–139.DECREE OF THE MINISTRY OF THE ENVIRONMENT. 492/2006 Coll., Amending and supplementing Decree of the Ministry of Environment of the Slovak Republic no. 24/2003 Coll., Implementing the Act. 543/2002 Coll. on nature and landscape protection.DIJKSTRA, K.D.B. and LEWINGTON, R. (2006) Field guide to the dragonflies of Britain and Europe including western Turkey and north-western Africa. London: British Wildlife Publishing, 320 p.DOLNÝ, A. et al.(2007) The dragonflies of the Czech Republic. Ecology, conservation and distribution. Vlaším: Český svaz ochránců přírody. 672 p. (in Czech).HANEL, L. and ZELENÝ, J. (2000) Dragonflies (Odonata), research and protection. In Metodika Českého svazu ochránců přírody, no. 9. 240 p. (in Czech).HEIDEMANN, H. and SEIDENBUSCH, R. (1993) Die Libellenlar­ven Deutschlands und Frankreichs. Handbuch für Exuviensammler. Keltern: Verlag Erna Bauer Keltern, 391 p.IUCN (2014) IUCN Red List of Threatened Species. Ver­sion 2014. 3.JANSKÝ, V. and DAVID, S. (2010) Dragonflies (Odonata) PR Šúr. In Majzlan, O., Vidlička, Ľ. Nature Reserves Sur. Institute of Zoology, 2010. 410 p.KALKMAN, V. J. et al. (eds.) (2010) European Red List of Dra­gonflies. Luxembourg: Publications Office of the European Union. 28 p.KOHL, S. (1998) Odonata. Anisoptera – Exuvien (Grossli­bellen-Larvenhäute) Europas. Bestimmungsschlüssel. Berlin: Kohl. 27 p.LAPIN, M. et al. (2002). Climate zones. In MIKLÓS, L. (ed.) Atlas of landscape of Slovakia. Bratislava: Ministerstvo životného prostredia SR. 95 p. (in Slovak).LOSOS, B. et al. (1984) Animal Ecology. Praha: Státní pedagogické nakladatelství. 300 p. (in Czech).LOSOS, B. (1992) Animal ecology: Exercises. Brno Masarykova univerzita. 229 p. (in Czech).THE ECONOMIC AND SOCIAL DEVELOPMENT OF THE VILLAGE KOMJATICE 2015 – 2023. Komjatice: Obecký úrad. 86 p. (in Slovak).WALDHAUSER, M. and ČERNÝ, M. (2014) Dragonflies Czech Republic. Guide for determining our species and their larvae. Vlaším: Český svaz ochránců přírody Vlaším. 184 p.  (in Czech).WASSCHER, M. T. and BOS, F.G. (2000) The European dragon­flies: notes on the checklist and on species diversity. Odonatologica, vol. 29, pp. 31–43

    OCCURRENCE OF SPECIES FAMILY CARABIDAE (COLEOPTERA) INDEPENCE ON THE INPUT OF ORGANIC MATTER INTO SOIL

    Get PDF
    Cieľom práce bolo zistiť vplyv rôznych dávok organických hnojív (maštaľného hnoja a biokalu) na výskyt pôdneho edafónu s dôrazom na druhy čeľade Carabidae. Počas rokov 2001 až 2003 sa metódou zemných pascí realizovali zbery pôdneho edafónu. Zbery sa uskutočnili v Kolíňanoch s celkovou plochou územia 9 000 m2, na piatich variantoch (1. variant - nehnojená kontrola; 2. variant - 25 t maštaľného hnoja.ha-1; 3. variant – 50 t.ha-1 biokalu; 4. variant – 50 t.ha-1 maštalného hnoja; 5. variant – 100 t .ha-1 biokalu). Na uvedených piatich variantoch sa získalo 59 054 exemplárov pôdneho edafónu, patriacich do 23 skupín. Do modelovej čeľade Carabidae patrilo 21 189 jedincov, v rámci ktorých bolo determinovaných 25 druhov. Hodnoty druhovej identity podľa Jaccarda (IA) sa pohybovali od 45,45 do 71,43 % a hodnoty identity dominancie (ID) boli v intervale od 94,20 do 97,72 %. Hodnoty diverzity (d) dosiahli 0,5406 až 0,8986. K dominantným druhom možno zaradiť druh Harpalus rufipes (De Geer, 1774), ktorý sa vyskytuje na suchých až polovlhkých, prevažne svetlých stanovištiach. Hodnoty jednotlivých variantov sú ovplyvňované množstvom inputov organickej hmoty do pôdy, ktorá má vplyv pri formovaní vyhranených spoločenstiev s charakteristickou druhovou skladbou. Pri porovnávaní jednotlivých variantov vo vzťahu k výskytu zooedafónu sa najlepšie prejavil variant hnojený biokalom v dávke 100 t.ha-1.The aim of this work was to investigate the effects of different rates of organic fertilizers (farmyard manure and bio sludge) on occurrence of soil organisms with focus to species of family Carabidae. During 2001-2003, samples of biological material were collected using the earth trap method. Samples were taken from five treatments (i) unfertilized, (ii) 25 t ha-1 farmyard manure, (iii) 50 t ha-1 bio sludge, (iv) 50 t ha-1 farmyard manure, (v) 100 t ha-1 bio sludge) which cover area of 9 000 m2 at experimental farm of Slovak Agricultural University Kolíňany. Totally 59 054 individuals of soil edaphon belong to 23 epigeic groups was collected from which 25 species totally 21 189 individuals belong to the target group Carabidae. The attributes of specific identity according Jaccard (IA) ranged from 45.45 to 71.43 % and those of dominant identity (ID) from 94.20 to 97.72 %. The attributes of diversity (d) achieved a level from 0.5406 to 0.8986. Harpalus rufipes (De Geer, 1774) occurring on arid to damp soil, mostly in light places, was determined as the dominant species. The attributes of individual treatments are influenced by the quantity of organic mater inputs into soil that affects the formation of well-defined communities with the characteristic species composition. A comparison of individual treatments in terms of the occurrence of zooedaphon showed that application of 100 t ha-1 bio sludge create the most suitable soil condition for zooedaphon development
    corecore