3 research outputs found

    A stochastic view of the 2020 Elazığ Mw6.8 earthquake (Turkey)

    Get PDF
    International audienceUntil the Mw 6.8 Elazığ earthquake ruptured the central portion of the East Anatolian Fault (EAF, Turkey) on January 24, 2020, the region had only experienced moderate magnitude (Mw < 6.2) earthquakes over the last century. We use geodetic data to constrain a model of subsurface fault slip. We adopt an unregularized Bayesian sampling approach relying solely on physically justifiable prior information and account for uncertainties in both the assumed elastic structure and fault geometry. The rupture of the Elazığ earthquake was mostly unilateral, with two primary disconnected regions of slip. This rupture pattern may be controlled by structural complexity. Both the Elazığ and 2010 Mw 6.1 Kovancılar events ruptured portions of the central EAF that are believed to be coupled during interseismic periods, and the Palu segment is the last portion of the EAF showing a large fault slip deficit which has not yet ruptured in the last 145 years

    A Stochastic View of the 2020 Elazığ M

    No full text

    Global quieting of high-frequency seismic noise due to COVID-19 pandemic lockdown measures

    No full text
    Human activity causes vibrations that propagate into the ground as high-frequency seismic waves. Measures to mitigate the coronavirus disease 2019 (COVID-19) pandemic caused widespread changes in human activity, leading to a months-long reduction in seismic noise of up to 50%. The 2020 seismic noise quiet period is the longest and most prominent global anthropogenic seismic noise reduction on record. Although the reduction is strongest at surface seismometers in populated areas, this seismic quiescence extends for many kilometers radially and hundreds of meters in depth. This quiet period provides an opportunity to detect subtle signals from subsurface seismic sources that would have been concealed in noisier times and to benchmark sources of anthropogenic noise. A strong correlation between seismic noise and independent measurements of human mobility suggests that seismology provides an absolute, real-time estimate of human activities
    corecore