2 research outputs found

    Enhanced Thermoelectric Performance of Synthetic Tetrahedrites

    No full text
    Electrical and thermal transport properties of synthetic tetrahedrites Cu<sub>10</sub>TM<sub>2</sub>Sb<sub>4</sub>S<sub>13</sub> (TM = Mn, Fe, Co, Ni, Zn) and the solid solution Cu<sub>12–<i>x</i></sub>Mn<sub><i>x</i></sub>Sb<sub>4</sub>S<sub>13</sub> (0 ≤ <i>x</i> ≤ 2) have been studied in the context of thermoelectric performance. Among these materials, the parent compound Cu<sub>12</sub>Sb<sub>4</sub>S<sub>13</sub> exhibits the highest power factor, which is primarily derived from a high electrical conductivity. All substituted derivatives display a significant and uniform reduction in thermal conductivity. Within the TM series, the Mn-substituted sample displays the highest ZT (0.8 at 575 K). Changing the Mn concentration to Cu<sub>11</sub>MnSb<sub>4</sub>S<sub>13</sub> produces the highest ZT, i.e., 1.13 at 575 K. The relatively high value derives from a favorable balance of low thermal conductivity and a relatively high power factor

    Data_Sheet_1_Association of resting-state theta–gamma coupling with selective visual attention in children with tic disorders.docx

    No full text
    A tic disorder (TD) is a neurodevelopmental disorder characterized by tics, which are repetitive movements and/or vocalizations that occur due to aberrant sensory gating. Its pathophysiology involves dysfunction in multiple parts of the cortico-striato-thalamo-cortical circuits. Spontaneous brain activity during the resting state can be used to evaluate the baseline brain state, and it is associated with various aspects of behavior and cognitive processes. Theta–gamma coupling (TGC) is an emerging technique for examining how neural networks process information through interactions. However, the resting-state TGC of patients with TD and its correlation with cognitive function have not yet been studied. We investigated the resting-state TGC of 13 patients with TD and compared it with that of 13 age-matched healthy children. The participants underwent resting-state electroencephalography with their eyes closed. At the global level, patients with TD showed a significantly lower resting-state TGC than healthy children. Resting-state TGC with the eyes closed was significantly negatively correlated with the attention quotient calculated for omission errors in a selective visual attention test. These findings indicate that the resting-state brain network, which is important for the attentional processing of visual information, is dysfunctional in patients with TD. Additionally, these findings support the view that TGC reflects information processing and signal interactions at the global level. Patients with TD may have difficulty gating irrelevant sensory information in the resting state while their eyes are closed.</p
    corecore