74 research outputs found
Threshold configurations in the presence of Lorentz violating dispersion relations
A general characterization of lower and upper threshold configurations for
two particle reactions is determined under the assumptions that the single
particle dispersion relations E(p) are rotationally invariant and monotonic in
p, and that energy and momentum are conserved and additive for multiple
particles. It is found that at a threshold the final particle momenta are
always parallel and the initial momenta are always anti-parallel. The
occurrence of new phenomena not occurring in a Lorentz invariant setting, such
as upper thresholds and asymmetric pair production thresholds, is explained,
and an illustrative example is given.Comment: 5 pages, 3 figure
On the Origin of the Outgoing Black Hole Modes
The question of how to account for the outgoing black hole modes without
drawing upon a transplanckian reservoir at the horizon is addressed. It is
argued that the outgoing modes must arise via conversion from ingoing modes. It
is further argued that the back-reaction must be included to avoid the
conclusion that particle creation cannot occur in a strictly stationary
background. The process of ``mode conversion" is known in plasma physics by
this name and in condensed matter physics as ``Andreev reflection" or ``branch
conversion". It is illustrated here in a linear Lorentz non-invariant model
introduced by Unruh. The role of interactions and a physical short distance
cutoff is then examined in the sonic black hole formed with Helium-II.Comment: 12 pages, plain latex, 2 figures included using psfig; Analogy to
``Andreev reflection" in superfluid systems noted, references and
acknowledgment added, format changed to shorten tex
Lorentz Violation in Extra Dimensions
In theories with extra dimensions it is well known that the Lorentz
invariance of the -dimensional spacetime is lost due to the compactified
nature of the dimensions leaving invariance only in 4d. In such theories
other sources of Lorentz violation may exist associated with the physics that
initiated the compactification process at high scales. Here we consider the
possibility of capturing some of this physics by analyzing the higher
dimensional analog of the model of Colladay and Kostelecky. In that scenario a
complete set of Lorentz violating operators arising from spontaneous Lorentz
violation, that are not obviously Planck-scale suppressed, are added to the
Standard Model action. Here we consider the influence of the analogous set of
operators which break Lorentz invariance in 5d within the Universal Extra
Dimensions picture. We show that such operators can greatly alter the
anticipated Kaluza-Klein(KK) spectra, induce electroweak symmetry breaking at a
scale related to the inverse compactification radius, yield sources of parity
violation in, e.g., 4d QED/QCD and result in significant violations of
KK-parity conservation produced by fermion Yukawa couplings, thus destabilizing
the lightest KK particle. LV in 6d is briefly discussed.Comment: 26 pages, 2 figures; additional references and discussio
Black Hole Lasers Revisited
Contribution to "Quantum Analogues: From Phase Transitions to Black Holes and Cosmology" edited by William G. Unruh and Ralf Schutzhold. (Lecture Notes in Physics Vol. 718)The production of Hawking radiation by a single horizon is not dependent on the high-frequency dispersion relation of the radiated field. When there are two horizons, however, Corley and Jacobson have shown that superluminal dispersion leads to an amplification of the particle production in the case of bosons. The analytic theory of this "black hole laser" process is quite complicated, so we provide some numerical results in the hope of aiding understanding of this interesting phenomenon. Specifically, we consider sonic horizons in a moving fluid. The theory of elementary excitations in a Bose-Einstein condensate provides an example of "superluminal" (Bogoliubov) dispersion, so we add Bogoliubov dispersion to Unruh's equation for sound in the fluid. A white-hole/black-hole horizon pair will then display black hole lasing. Numerical analysis of the evolution of a wave packet gives a clear picture of the amplification process. By utilizing the similarity of a radiating horizon to a parametric amplifier in quantum optics we also analyze the black hole laser as a quantum-optical network
Generalised second law of thermodynamics for interacting dark energy in the DGP brane world
In this paper, we investigate the validity of the generalized second law of
thermodynamics (GSLT) in the DGP brane world when universe is filled with
interacting two fluid system: one in the form of cold dark matter and other is
holographic dark energy. The boundary of the universe is assumed to be enclosed
by the dynamical apparent horizon or the event horizon. The universe is chosen
to be homogeneous and isotropic FRW model and the validity of the first law has
been assumed here
The Hamiltonian of Einstein affine-metric formulation of General Relativity
It is shown that the Hamiltonian of the Einstein affine-metric (first order)
formulation of General Relativity (GR) leads to a constraint structure that
allows the restoration of its unique gauge invariance, four-diffeomorphism,
without the need of any field dependent redefinition of gauge parameters as is
the case for the second order formulation. In the second order formulation of
ADM gravity the need for such a redefinition is the result of the non-canonical
change of variables [arXiv: 0809.0097]. For the first order formulation, the
necessity of such a redefinition "to correspond to diffeomorphism invariance"
(reported by Ghalati [arXiv: 0901.3344]) is just an artifact of using the
Henneaux-Teitelboim-Zanelli ansatz [Nucl. Phys. B 332 (1990) 169], which is
sensitive to the choice of linear combination of tertiary constraints. This
ansatz cannot be used as an algorithm for finding a gauge invariance, which is
a unique property of a physical system, and it should not be affected by
different choices of linear combinations of non-primary first class
constraints. The algorithm of Castellani [Ann. Phys. 143 (1982) 357] is free
from such a deficiency and it leads directly to four-diffeomorphism invariance
for first, as well as for second order Hamiltonian formulations of GR. The
distinct role of primary first class constraints, the effect of considering
different linear combinations of constraints, the canonical transformations of
phase-space variables, and their interplay are discussed in some detail for
Hamiltonians of the second and first order formulations of metric GR. The first
order formulation of Einstein-Cartan theory, which is the classical background
of Loop Quantum Gravity, is also discussed.Comment: 74 page
Dark Energy and Gravity
I review the problem of dark energy focusing on the cosmological constant as
the candidate and discuss its implications for the nature of gravity. Part 1
briefly overviews the currently popular `concordance cosmology' and summarises
the evidence for dark energy. It also provides the observational and
theoretical arguments in favour of the cosmological constant as the candidate
and emphasises why no other approach really solves the conceptual problems
usually attributed to the cosmological constant. Part 2 describes some of the
approaches to understand the nature of the cosmological constant and attempts
to extract the key ingredients which must be present in any viable solution. I
argue that (i)the cosmological constant problem cannot be satisfactorily solved
until gravitational action is made invariant under the shift of the matter
lagrangian by a constant and (ii) this cannot happen if the metric is the
dynamical variable. Hence the cosmological constant problem essentially has to
do with our (mis)understanding of the nature of gravity. Part 3 discusses an
alternative perspective on gravity in which the action is explicitly invariant
under the above transformation. Extremizing this action leads to an equation
determining the background geometry which gives Einstein's theory at the lowest
order with Lanczos-Lovelock type corrections. (Condensed abstract).Comment: Invited Review for a special Gen.Rel.Grav. issue on Dark Energy,
edited by G.F.R.Ellis, R.Maartens and H.Nicolai; revtex; 22 pages; 2 figure
Affine Gravity, Palatini Formalism and Charges
Affine gravity and the Palatini formalism contribute both to produce a simple
and unique formula for calculating charges at spatial and null infinity for
Lovelock type Lagrangians whose variational derivatives do not depend on
second-order derivatives of the field components. The method is based on the
covariant generalization due to Julia and Silva of the Regge-Teitelboim
procedure that was used to define properly the mass in the classical
formulation of Einstein's theory of gravity. Numerous applications reproduce
standard results obtained by other secure but mostly specialized methods. As a
novel application we calculate the Bondi energy loss in five dimensional
gravity, based on the asymptotic solution given by Tanabe, Tanahashi and
Shiromizu, and obtain, as expected, the same result. We also give the
superpotential for Einstein-Gauss-Bonnet gravity and find the superpotential
for Lovelock theories of gravity when the number of dimensions tends to
infinity with maximally symmetrical boundaries. The paper is written in
standard component formalism.Comment: The work is dedicated to Joshua Goldberg from whom I learned and got
interested in conservation laws in General Relativity (J.K
Toward a 21st-century health care system: Recommendations for health care reform
The coverage, cost, and quality problems of the U.S. health care system are evident. Sustainable health care reform must go beyond financing expanded access to care to substantially changing the organization and delivery of care. The FRESH-Thinking Project (www.fresh-thinking.org) held a series of workshops during which physicians, health policy experts, health insurance executives, business leaders, hospital administrators, economists, and others who represent diverse perspectives came together. This group agreed that the following 8 recommendations are fundamental to successful reform: 1. Replace the current fee-for-service payment system with a payment system that encourages and rewards innovation in the efficient delivery of quality care. The new payment system should invest in the development of outcome measures to guide payment. 2. Establish a securely funded, independent agency to sponsor and evaluate research on the comparative effectiveness of drugs, devices, and other medical interventions. 3. Simplify and rationalize federal and state laws and regulations to facilitate organizational innovation, support care coordination, and streamline financial and administrative functions. 4. Develop a health information technology infrastructure with national standards of interoperability to promote data exchange. 5. Create a national health database with the participation of all payers, delivery systems, and others who own health care data. Agree on methods to make de-identified information from this database on clinical interventions, patient outcomes, and costs available to researchers. 6. Identify revenue sources, including a cap on the tax exclusion of employer-based health insurance, to subsidize health care coverage with the goal of insuring all Americans. 7. Create state or regional insurance exchanges to pool risk, so that Americans without access to employer-based or other group insurance could obtain a standard benefits package through these exchanges. Employers should also be allowed to participate in these exchanges for their employees' coverage. 8. Create a health coverage board with broad stakeholder representation to determine and periodically update the affordable standard benefit package available through state or regional insurance exchanges
Contributions of traditional and HIV-related risk factors on non-AIDS-defining cancer, myocardial infarction, and end-stage liver and renal diseases in adults with HIV in the USA and Canada: a collaboration of cohort studies
Background: Adults with HIV have an increased burden of non-AIDS-defining cancers, myocardial infarction, end-stage liver disease, and end-stage renal disease. The objective of this study was to estimate the population attributable fractions (PAFs) of preventable or modifiable HIV-related and traditional risk factors for non-AIDS-defining cancers, myocardial infarction, end-stage liver disease, and end-stage renal disease outcomes. Methods: We included participants receiving care in academic and community-based outpatient HIV clinical cohorts in the USA and Canada from Jan 1, 2000, to Dec 31, 2014, who contributed to the North American AIDS Cohort Collaboration on Research and Design and who had validated non-AIDS-defining cancers, myocardial infarction, end-stage liver disease, or end-stage renal disease outcomes. Traditional risk factors were tobacco smoking, hypertension, elevated total cholesterol, type 2 diabetes, renal impairment (stage 4 chronic kidney disease), and hepatitis C virus and hepatitis B virus infections. HIV-related risk factors were low CD4 count (400 copies per mL), and history of a clinical AIDS diagnosis. PAFs and 95% CIs were estimated to quantify the proportion of outcomes that could be avoided if the risk factor was prevented. Findings: In each of the study populations for the four outcomes (1405 of 61 500 had non-AIDS-defining cancer, 347 of 29 515 had myocardial infarctions, 387 of 35 044 had end-stage liver disease events, and 255 of 35 620 had end-stage renal disease events), about 17% were older than 50 years at study entry, about 50% were non-white, and about 80% were men. Preventing smoking would avoid 24% (95% CI 13–35) of these cancers and 37% (7–66) of the myocardial infarctions. Preventing elevated total cholesterol and hypertension would avoid the greatest proportion of myocardial infarctions: 44% (30–58) for cholesterol and 42% (28–56) for hypertension. For liver disease, the PAF was greatest for hepatitis C infection (33%; 95% CI 17–48). For renal disease, the PAF was greatest for hypertension (39%; 26–51) followed by elevated total cholesterol (22%; 13–31), detectable HIV RNA (19; 9–31), and low CD4 cell count (13%; 4–21). Interpretation: The substantial proportion of non-AIDS-defining cancers, myocardial infarction, end-stage liver disease, and end-stage renal disease outcomes that could be prevented with interventions on traditional risk factors elevates the importance of screening for these risk factors, improving the effectiveness of prevention (or modification) of these risk factors, and creating sustainable care models to implement such interventions during the decades of life of adults living with HIV who are receiving care. Funding: National Institutes of Health, US Centers for Disease Control and Prevention, the US Agency for Healthcare Research and Quality, the US Health Resources and Services Administration, the Canadian Institutes of Health Research, the Ontario Ministry of Health and Long Term Care, and the Government of Alberta
- …