232 research outputs found
Precise detection of rearrangement breakpoints in mammalian chromosomes
<p>Abstract</p> <p>Background</p> <p>Genomes undergo large structural changes that alter their organisation. The chromosomal regions affected by these rearrangements are called breakpoints, while those which have not been rearranged are called synteny blocks. We developed a method to precisely delimit rearrangement breakpoints on a genome by comparison with the genome of a related species. Contrary to current methods which search for synteny blocks and simply return what remains in the genome as breakpoints, we propose to go further and to investigate the breakpoints themselves in order to refine them.</p> <p>Results</p> <p>Given some reliable and non overlapping synteny blocks, the core of the method consists in refining the regions that are not contained in them. By aligning each breakpoint sequence against its specific orthologous sequences in the other species, we can look for weak similarities inside the breakpoint, thus extending the synteny blocks and narrowing the breakpoints. The identification of the narrowed breakpoints relies on a segmentation algorithm and is statistically assessed. Since this method requires as input synteny blocks with some properties which, though they appear natural, are not verified by current methods for detecting such blocks, we further give a formal definition and provide an algorithm to compute them.</p> <p>The whole method is applied to delimit breakpoints on the human genome when compared to the mouse and dog genomes. Among the 355 human-mouse and 240 human-dog breakpoints, 168 and 146 respectively span less than 50 Kb. We compared the resulting breakpoints with some publicly available ones and show that we achieve a better resolution. Furthermore, we suggest that breakpoints are rarely reduced to a point, and instead consist in often large regions that can be distinguished from the sequences around in terms of segmental duplications, similarity with related species, and transposable elements.</p> <p>Conclusion</p> <p>Our method leads to smaller breakpoints than already published ones and allows for a better description of their internal structure. In the majority of cases, our refined regions of breakpoint exhibit specific biological properties (no similarity, presence of segmental duplications and of transposable elements). We hope that this new result may provide some insight into the mechanism and evolutionary properties of chromosomal rearrangements.</p
ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI expert consensus recommendations for multimodality imaging in cardiac amyloidosis: Part 1 of 2—evidence base and standardized methods of imaging
Cardiac amyloidosis is a form of restrictive infiltrative cardiomyopathy that confers significant mortality. Due to the relative rarity of cardiac amyloidosis, clinical and diagnostic expertise in the recognition and evaluation of individuals with suspected amyloidosis is mostly limited to a few expert centers. Electrocardiography, echocardiography, and radionuclide imaging have been used for the evaluation of cardiac amyloidosis for over 40 years.1-3 Although cardiovascular magnetic resonance (CMR) has also been in clinical practice for several decades, it was not applied to cardiac amyloidosis until the late 1990s. Despite an abundance of diagnostic imaging options, cardiac amyloidosis remains largely underrecognized or delayed in diagnosis.4 While advanced imaging options for noninvasive evaluation have substantially expanded, the evidence is predominately confined to single-center small studies or limited multicenter larger experiences, and there continues to be no clear consensus on standardized imaging pathways in cardiac amyloidosis. This lack of guidance is particularly problematic given that there are numerous emerging therapeutic options for this morbid disease, increasing the importance of accurate recognition at earlier stages. Imaging provides non-invasive tools for follow-up of disease remission/progression complementing clinical evaluation. Additional areas not defined include appropriate clinical indications for imaging, optimal imaging utilization by clinical presentation, accepted imaging methods, accurate image interpretation, and comprehensive and clear reporting. Prospective randomized clinical trial data for the diagnosis of amyloidosis and for imaging-based strategies for treatment are not available. A consensus of expert opinion is greatly needed to guide the appropriate clinical utilization of imaging in cardiac amyloidosis
ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI expert consensus recommendations for multimodality imaging in cardiac amyloidosis: Part 2 of 2—Diagnostic criteria and appropriate utilization
Cardiac amyloidosis is emerging as an underdiagnosed cause of heart failure and mortality. Growing literature suggests that a noninvasive diagnosis of cardiac amyloidosis is now feasible. However, the diagnostic criteria and utilization of imaging in cardiac amyloidosis are not standardized. In this paper, Part 2 of a series, a panel of international experts from multiple societies define the diagnostic criteria for cardiac amyloidosis and appropriate utilization of echocardiography, cardiovascular magnetic resonance imaging, and radionuclide imaging in the evaluation of patients with known or suspected cardiac amyloidosis
ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI Expert Consensus Recommendations for Multimodality Imaging in Cardiac Amyloidosis: Part 2 of 2—Diagnostic Criteria and Appropriate Utilization
Cardiac amyloidosis is emerging as an underdiagnosed cause of heart failure and mortality. Growing literature suggests that a noninvasive diagnosis of cardiac amyloidosis is now feasible. However, the diagnostic criteria and utilization of imaging in cardiac amyloidosis are not standardized. In this paper, Part 2 of a series, a panel of international experts from multiple societies define the diagnostic criteria for cardiac amyloidosis and appropriate utilization of echocardiography, cardiovascular magnetic resonance imaging, and radionuclide imaging in the evaluation of patients with known or suspected cardiac amyloidosis
ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI Expert Consensus Recommendations for Multimodality Imaging in Cardiac Amyloidosis: Part 1 of 2—Evidence Base and Standardized Methods of Imaging
Cardiac amyloidosis is a form of restrictive infiltrative cardiomyopathy that confers significant mortality. Because of the relative rarity of cardiac amyloidosis, clinical and diagnostic expertise in the recognition and evaluation of individuals with suspected amyloidosis is mostly limited to a few expert centers. Electrocardiography, echocardiography, and radionuclide imaging have been used for the evaluation of cardiac amyloidosis for over 40 years.1, 2, 3 Although cardiovascular magnetic resonance (CMR) has also been in clinical practice for several decades, it was not applied to cardiac amyloidosis until the late 1990s. Despite an abundance of diagnostic imaging options, cardiac amyloidosis remains largely underrecognized or delayed in diagnosis.4 Although advanced imaging options for noninvasive evaluation have substantially expanded, the evidence is predominately confined to single-center small studies or limited multicenter larger experiences, and there continues to be no clear consensus on standardized imaging pathways in cardiac amyloidosis. This lack of guidance is particularly problematic given that there are numerous emerging therapeutic options for this morbid disease, increasing the importance of accurate recognition at earlier stages. Imaging provides noninvasive tools for follow-up of disease remission/progression complementing clinical evaluation. Additional areas not defined include appropriate clinical indications for imaging, optimal imaging utilization by clinical presentation, accepted imaging methods, accurate image interpretation, and comprehensive and clear reporting. Prospective randomized clinical trial data for the diagnosis of amyloidosis and for imaging-based strategies for treatment are not available. A consensus of expert opinion is greatly needed to guide the appropriate clinical utilization of imaging in cardiac amyloidosis
Enrichment analysis of Alu elements with different spatial chromatin proximity in the human genome
Transposable elements (TEs) have no longer been totally considered as “junk DNA” for quite a time since the continual discoveries of their multifunctional roles in eukaryote genomes. As one of the most important and abundant TEs that still active in human genome, Alu, a SINE family, has demonstrated its indispensable regulatory functions at sequence level, but its spatial roles are still unclear. Technologies based on 3C(chromosomeconformation capture) have revealed the mysterious three-dimensional structure of chromatin, and make it possible to study the distal chromatin interaction in the genome. To find the role TE
playing in distal regulation in human genome, we compiled the new released Hi-C data, TE annotation, histone marker annotations, and the genome-wide methylation data to operate correlation analysis, and found that the density of Alu elements showed a strong positive correlation with the level of chromatin interactions (hESC: r=0.9, P<2.2×1016; IMR90 fibroblasts: r = 0.94, P < 2.2 × 1016) and also have a significant positive correlation withsomeremote functional DNA elements like enhancers and promoters (Enhancer: hESC: r=0.997, P=2.3×10−4; IMR90: r=0.934, P=2×10−2; Promoter: hESC: r = 0.995, P = 3.8 × 10−4; IMR90: r = 0.996, P = 3.2 × 10−4). Further investigation involving GC content and methylation status showed the GC content of Alu covered sequences shared a similar pattern with that of the overall sequence, suggesting that Alu elements also function as the GC nucleotide and CpG site provider. In all, our results suggest that the Alu elements may act as an alternative parameter to evaluate the Hi-C data, which is confirmed by the correlation analysis of Alu elements and histone markers. Moreover, the GC-rich Alu sequence can bring high GC content and methylation flexibility to the regions with more distal chromatin contact, regulating the transcription of tissue-specific genes
Acute neurological signs as the predominant clinical manifestation in four dogs with Angiostrongylus vasorum infections in Denmark
Four dogs with acute neurological signs caused by haemorrhages in the central nervous system were diagnosed with Angiostrongylus vasorum infection as the underlying aetiology. Two dogs presented with brain lesions, one dog with spinal cord lesions and one with lesions in both the brain and spinal cord. Only one dog presented with concurrent signs of classical pulmonary angiostrongylosis (respiratory distress, cough), and only two dogs displayed overt clinical signs of haemorrhages. Results of coagulation assays were inconsistent. Neurological signs reflected the site of pathology and included seizures, various cranial nerve deficits, vestibular signs, proprioceptive deficits, ataxia and paraplegia. One dog died and three were euthanised due to lack of improvement despite medical treatment. This emphasises canine angiostrongylosis as a potential cause of fatal lesions of the central nervous system and the importance of including A. vasorum as a differential diagnosis in young dogs with acute neurological signs in Denmark
Arm-specific dynamics of chromosome evolution in malaria mosquitoes
<p>Abstract</p> <p>Background</p> <p>The malaria mosquito species of subgenus <it>Cellia </it>have rich inversion polymorphisms that correlate with environmental variables. Polymorphic inversions tend to cluster on the chromosomal arms 2R and 2L but not on X, 3R and 3L in <it>Anopheles gambiae </it>and homologous arms in other species. However, it is unknown whether polymorphic inversions on homologous chromosomal arms of distantly related species from subgenus <it>Cellia </it>nonrandomly share similar sets of genes. It is also unclear if the evolutionary breakage of inversion-poor chromosomal arms is under constraints.</p> <p>Results</p> <p>To gain a better understanding of the arm-specific differences in the rates of genome rearrangements, we compared gene orders and established syntenic relationships among <it>Anopheles gambiae, Anopheles funestus</it>, and <it>Anopheles stephensi</it>. We provided evidence that polymorphic inversions on the 2R arms in these three species nonrandomly captured similar sets of genes. This nonrandom distribution of genes was not only a result of preservation of ancestral gene order but also an outcome of extensive reshuffling of gene orders that created new combinations of homologous genes within independently originated polymorphic inversions. The statistical analysis of distribution of conserved gene orders demonstrated that the autosomal arms differ in their tolerance to generating evolutionary breakpoints. The fastest evolving 2R autosomal arm was enriched with gene blocks conserved between only a pair of species. In contrast, all identified syntenic blocks were preserved on the slowly evolving 3R arm of <it>An. gambiae </it>and on the homologous arms of <it>An. funestus </it>and <it>An. stephensi</it>.</p> <p>Conclusions</p> <p>Our results suggest that natural selection favors specific gene combinations within polymorphic inversions when distant species are exposed to similar environmental pressures. This knowledge could be useful for the discovery of genes responsible for an association of inversion polymorphisms with phenotypic variations in multiple species. Our data support the chromosomal arm specificity in rates of gene order disruption during mosquito evolution. We conclude that the distribution of breakpoint regions is evolutionary conserved on slowly evolving arms and tends to be lineage-specific on rapidly evolving arms.</p
Hydration level is an internal variable for computing motivation to obtain water rewards in monkeys
In the process of motivation to engage in a behavior, valuation of the expected outcome is comprised of not only external variables (i.e., incentives) but also internal variables (i.e., drive). However, the exact neural mechanism that integrates these variables for the computation of motivational value remains unclear. Besides, the signal of physiological needs, which serves as the primary internal variable for this computation, remains to be identified. Concerning fluid rewards, the osmolality level, one of the physiological indices for the level of thirst, may be an internal variable for valuation, since an increase in the osmolality level induces drinking behavior. Here, to examine the relationship between osmolality and the motivational value of a water reward, we repeatedly measured the blood osmolality level, while 2 monkeys continuously performed an instrumental task until they spontaneously stopped. We found that, as the total amount of water earned increased, the osmolality level progressively decreased (i.e., the hydration level increased) in an individual-dependent manner. There was a significant negative correlation between the error rate of the task (the proportion of trials with low motivation) and the osmolality level. We also found that the increase in the error rate with reward accumulation can be well explained by a formula describing the changes in the osmolality level. These results provide a biologically supported computational formula for the motivational value of a water reward that depends on the hydration level, enabling us to identify the neural mechanism that integrates internal and external variables
- …