32 research outputs found

    Autologous microsurgical breast reconstruction and coronary artery bypass grafting: an anatomical study and clinical implications

    Get PDF
    OBJECTIVE: To identify possible avenues of sparing the internal mammary artery (IMA) for coronary artery bypass grafting (CABG) in women undergoing autologous breast reconstruction with deep inferior epigastric artery perforator (DIEP) flaps. BACKGROUND: Optimal autologous reconstruction of the breast and coronary artery bypass grafting (CABG) are often mutually exclusive as they both require utilisation of the IMA as the preferred arterial conduit. Given the prevalence of both breast cancer and coronary artery disease, this is an important issue for women's health as women with DIEP flap reconstructions and women at increased risk of developing coronary artery disease are potentially restricted from receiving this reconstructive option should the other condition arise. METHODS: The largest clinical and cadaveric anatomical study (n=315) to date was performed, investigating four solutions to this predicament by correlating the precise requirements of breast reconstruction and CABG against the anatomical features of the in situ IMAs. This information was supplemented by a thorough literature review. RESULTS: Minimum lengths of the left and right IMA needed for grafting to the left-anterior descending artery are 160.08 and 177.80 mm, respectively. Based on anatomical findings, the suitable options for anastomosis to each intercostals space are offered. In addition, 87-91% of patients have IMA perforator vessels to which DIEP flaps can be anastomosed in the first- and second-intercostal spaces. CONCLUSION: We outline five methods of preserving the IMA for future CABG: (1) lowering the level of DIEP flaps to the fourth- and fifth-intercostals spaces, (2) using the DIEP pedicle as an intermediary for CABG, (3) using IMA perforators to spare the IMA proper, (4) using and end-to-side anastomosis between the DIEP pedicle and IMA and (5) anastomosis of DIEP flaps using retrograde flow from the distal IMA. With careful patient selection, we hypothesize using the IMA for autologous breast reconstruction need not be an absolute contraindication for future CABG

    Relative contributions of adipose-resident CD146 pericytes and CD34 adventitial progenitor cells in bone tissue engineering

    Get PDF
    Bone repair: synergistic healing from two types of fat cells Different kinds of cells found surrounding blood vessels in fat play a complementary and synergistic role in bone healing. Aaron James from Johns Hopkins University in Baltimore, MD, USA, and colleagues derived two subsets of cells from human fat tissue: contractile cells known as pericytes that wrap around cellular lining of capillaries and tiny veins; and connective tissue cells known as adventitial cells that surrounds larger vessels. Under isolated culture conditions, pericytes stimulated the development of primitive blood vessels, whereas adventitial cells promoted early bone formation. The researchers applied the cells to the sites of bone defects in mice and saw that combined treatment with both pericytes and adventitial cells led to greater bone repair than treatment with either cell type alone

    Isolation and characterization of canine perivascular stem/stromal cells for bone tissue engineering

    Get PDF
    For over 15 years, human subcutaneous adipose tissue has been recognized as a rich source of tissue resident mesenchymal stem/stromal cells (MSC). The isolation of perivascular progenitor cells from human adipose tissue by a cell sorting strategy was first published in 2008. Since this time, the interest in using pericytes and related perivascular stem/stromal cell (PSC) populations for tissue engineering has significantly increased. Here, we describe a set of experiments identifying, isolating and characterizing PSC from canine tissue (N = 12 canine adipose tissue samples). Results showed that the same antibodies used for human PSC identification and isolation are cross-reactive with canine tissue (CD45, CD146, CD34). Like their human correlate, canine PSC demonstrate characteristics of MSC including cell surface marker expression, colony forming unit-fibroblast (CFU-F) inclusion, and osteogenic differentiation potential. As well, canine PSC respond to osteoinductive signals in a similar fashion as do human PSC, such as the secreted differentiation factor NEL-Like Molecule-1 (NELL-1). Nevertheless, important differences exist between human and canine PSC, including differences in baseline osteogenic potential. In summary, canine PSC represent a multipotent mesenchymogenic cell source for future translational efforts in tissue engineering

    Optimal Elective Scalp Incision Design

    No full text

    Facial Implants

    No full text

    Porous high-density polyethylene in facial reconstruction and revision rhinoplasty: a prospective cohort study

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Initial methods which used human tissues as reconstruction materials caused different problems including rejection, limited shapes and infection. In 1970s, PHDPE (Medpor®) was introduced by its exclusive advantageous including no donor site morbidity, easily shaped and the minimal foreign body reaction. Hereby, we report our experience of using Medpor® in facial reconstruction especially in frontal reconstruction and orbital rim with a large sample size.</p> <p>Methods</p> <p>This study was a prospective cohort study. Surgical techniques included using Medpor® in reconstruction of lamina papiracea (LP) (15 patients), frontal bone (15 patients), orbital rim (18 patients) and open rhinoplasty (8 patients). All interventions on LP were performed by endoscopic procedures. All frontal operations were carried out by bicoronal incision. In orbital defects, we used subciliary incision.</p> <p>Results</p> <p>From all 56 patients, 1 case had primitive neuroectodermal tumor (PNET) of maxillary sinus. In that case, reconstruction of inferior orbital rim was not successful and extrusion was occurred after radiotherapy. In rhinoplasty and other experiences no extrusion or infection were detected within the next 1 to 3 years of follow up. There were not any palpable and visible irregularities under the skin in our experiences.</p> <p>Conclusions</p> <p>In this study the patients did not experience any complications during the follow up periods and the satisfaction was remarkable. Gathering these data gives rise to future review studies which can provide more organized evidences for replacing classic reconstructive methods by the presented material.</p
    corecore