520 research outputs found

    In vivo characterization of early-stage radiation skin injury in a mouse model by two-photon microscopy

    Get PDF
    Ionizing radiation (IR) injury is tissue damage caused by high energy electromagnetic waves such as X-ray and gamma ray. Diagnosis and treatment of IR injury are difficult due to its characteristics of clinically latent post-irradiation periods and the following successive and unpredictable inflammatory bursts. Skin is one of the many sensitive organs to IR and bears local injury upon exposure. Early-stage diagnosis of IR skin injury is essential in order to maximize treatment efficiency and to prevent the aggravation of IR injury. In this study, early-stage changes of the IR injured skin at the cellular level were characterized in an in vivo mouse model by two-photon microscopy (TPM). Various IR doses were applied to the mouse hind limbs and the injured skin regions were imaged daily for 6 days after IR irradiation. Changes in the morphology and distribution of the epidermal cells and damage of the sebaceous glands were observed before clinical symptoms. These results showed that TPM is sensitive to early-stage changes of IR skin injury and may be useful for its diagnosis.1194Ysciescopu

    Clostridium: Transmission difficile?

    Get PDF
    Stephan Harbarth and Matthew Samore discuss the implications, and the limitations, of new research that might indicate that most Clostridium difficile cases are imported into hospitals

    The Role of Screenings Methods and Risk Profile Assessments in Prevention and Health Promotion Programmes: An Ethnographic Analysis

    Get PDF
    In prevention and health promotion interventions, screening methods and risk profile assessments are often used as tools for establishing the interventions’ effectiveness, for the selection and determination of the health status of participants. The role these instruments fulfil in the creation of effectiveness and the effects these instruments have themselves remain unexplored. In this paper, we have analysed the role screening methods and risk profile assessments fulfil as part of prevention and health promotion programmes in the selection, enrolment and participation of participants. Our analysis showed, that screening methods and health risk assessments create effects as they objectify health risks and/or the health status of individuals, i.e., they select the individuals ‘at risk’ and indicate the lifestyle modifications these people are required to make in order to improve their health. Yet, these instruments also reduce the group of participants thereby decreasing the possible effect of interventions, as they provide the legitimisation for people to make choices to whether they enrol or not and what lifestyle changes they incorporate into their lives. In other words, they present a space of interaction, in which agency is distributed across the practice nurses, the participants and the instruments. Decisions were not just made upon the projection of the outcomes of these instruments; decisions that were made by both the patients and practice nurses were the resultant of their opinions on these outcomes that were formed in interaction with the instruments

    MAGI-1 Modulates AMPA Receptor Synaptic Localization and Behavioral Plasticity in Response to Prior Experience

    Get PDF
    It is well established that the efficacy of synaptic connections can be rapidly modified by neural activity, yet how the environment and prior experience modulate such synaptic and behavioral plasticity is only beginning to be understood. Here we show in C. elegans that the broadly conserved scaffolding molecule MAGI-1 is required for the plasticity observed in a glutamatergic circuit. This mechanosensory circuit mediates reversals in locomotion in response to touch stimulation, and the AMPA-type receptor (AMPAR) subunits GLR-1 and GLR-2, which are required for reversal behavior, are localized to ventral cord synapses in this circuit. We find that animals modulate GLR-1 and GLR-2 localization in response to prior mechanosensory stimulation; a specific isoform of MAGI-1 (MAGI-1L) is critical for this modulation. We show that MAGI-1L interacts with AMPARs through the intracellular domain of the GLR-2 subunit, which is required for the modulation of AMPAR synaptic localization by mechanical stimulation. In addition, mutations that prevent the ubiquitination of GLR-1 prevent the decrease in AMPAR localization observed in previously stimulated magi-1 mutants. Finally, we find that previously-stimulated animals later habituate to subsequent mechanostimulation more rapidly compared to animals initially reared without mechanical stimulation; MAGI-1L, GLR-1, and GLR-2 are required for this change in habituation kinetics. Our findings demonstrate that prior experience can cause long-term alterations in both behavioral plasticity and AMPAR localization at synapses in an intact animal, and indicate a new, direct role for MAGI/S-SCAM proteins in modulating AMPAR localization and function in the wake of variable sensory experience

    Xylitol production is increased by expression of codon-optimized Neurospora crassa xylose reductase gene in Candida tropicalis

    Get PDF
    Xylose reductase (XR) is the first enzyme in d-xylose metabolism, catalyzing the reduction of d-xylose to xylitol. Formation of XR in the yeast Candida tropicalis is significantly repressed in cells grown on medium that contains glucose as carbon and energy source, because of the repressive effect of glucose. This is one reason why glucose is not a suitable co-substrate for cell growth in industrial xylitol production. XR from the ascomycete Neurospora crassa (NcXR) has high catalytic efficiency; however, NcXR is not expressed in C. tropicalis because of difference in codon usage between the two species. In this study, NcXR codons were changed to those preferred in C. tropicalis. This codon-optimized NcXR gene (termed NXRG) was placed under control of a constitutive glyceraldehyde-3-phosphate dehydrogenase (GAPDH) promoter derived from C. tropicalis, and integrated into the genome of xylitol dehydrogenase gene (XYL2)-disrupted C. tropicalis. High expression level of NXRG was confirmed by determining XR activity in cells grown on glucose medium. The resulting recombinant strain, LNG2, showed high XR activity (2.86 U (mg of protein)−1), whereas parent strain BSXDH-3 showed no activity. In xylitol fermentation using glucose as a co-substrate with xylose, LNG2 showed xylitol production rate 1.44 g L−1 h−1 and xylitol yield of 96% at 44 h, which were 73 and 62%, respectively, higher than corresponding values for BSXDH-3 (rate 0.83 g L−1 h−1; yield 59%)

    Potential Pathways to Restore β-Cell Mass: Pluripotent Stem Cells, Reprogramming, and Endogenous Regeneration

    Get PDF
    Currently available β-cell replacement therapies for patients with diabetes, including islet and pancreas transplantation, are largely successful in restoring normal glucose metabolism, but the scarcity of organ donors restricts their more widespread use. To solve this supply problem, several different strategies for achieving β-cell mass restoration are being pursued. These include the generation of β cells from stem cells and their subsequent transplantation, or regeneration-type approaches, such as stimulating endogenous regenerative mechanisms or inducing reprogramming of non-β cells into β cells. Because these strategies would ultimately generate allogeneic or syngeneic β cells in humans, the control of alloimmunity and/or autoimmunity in addition to replacing lost β cells will be of utmost importance. We briefly review the recent literature on these three promising strategies toward β-cell replacement or restoration and point out the major issues impacting their translation to treating human diabetes
    corecore