29 research outputs found
Quantifying Exocytosis by Combination of Membrane Capacitance Measurements and Total Internal Reflection Fluorescence Microscopy in Chromaffin Cells
Total internal reflection fluorescence microscopy (TIRF-Microscopy) allows the observation of individual secretory vesicles in real-time during exocytosis. In contrast to electrophysiological methods, such as membrane capacitance recording or carbon fiber amperometry, TIRF-Microscopy also enables the observation of vesicles as they reside close to the plasma membrane prior to fusion. However, TIRF-Microscopy is limited to the visualization of vesicles that are located near the membrane attached to the glass coverslip on which the cell grows. This has raised concerns as to whether exocytosis measured with TIRF-Microscopy is comparable to global secretion of the cell measured with membrane capacitance recording. Here we address this concern by combining TIRF-Microscopy and membrane capacitance recording to quantify exocytosis from adrenal chromaffin cells. We found that secretion measured with TIRF-Microscopy is representative of the overall secretion of the cells, thereby validating for the first time the TIRF method as a measure of secretion. Furthermore, the combination of these two techniques provides a new tool for investigating the molecular mechanism of synaptic transmission with combined electrophysiological and imaging techniques
Competition at silent synapses in reinnervated skeletal muscle
Synaptic connections are made and broken in an activity-dependent manner in diverse regions of
the nervous system. However, whether activity is strictly necessary for synapse elimination has not
been resolved directly. Here we report that synaptic terminals occupying motor endplates made
electrically silent by tetrodotoxin and alpha-bungarotoxin block were frequently displaced by regenerating
axons that were also both inactive and synaptically ineffective. Thus, neither evoked nor spontaneous
activation of acetylcholine receptors is required for competitive reoccupation of
neuromuscular synaptic sites by regenerating motor axons
