90 research outputs found

    Erratum to : Analysis of the mitochondrial maxicircle of Trypanosoma lewisi, a neglected human pathogen

    Get PDF
    BACKGROUND The haemoflagellate Trypanosoma lewisi is a kinetoplastid parasite which, as it has been recently reported to cause human disease, deserves increased attention. Characteristic features of all kinetoplastid flagellates are a uniquely structured mitochondrial DNA or kinetoplast, comprised of a network of catenated DNA circles, and RNA editing of mitochondrial transcripts. The aim of this study was to describe the kinetoplast DNA of T. lewisi. METHODS/RESULTS In this study, purified kinetoplast DNA from T. lewisi was sequenced using high-throughput sequencing in combination with sequencing of PCR amplicons. This allowed the assembly of the T. lewisi kinetoplast maxicircle DNA, which is a homologue of the mitochondrial genome in other eukaryotes. The assembly of 23,745 bp comprises the non-coding and coding regions. Comparative analysis of the maxicircle sequence of T. lewisi with Trypanosoma cruzi, Trypanosoma rangeli, Trypanosoma brucei and Leishmania tarentolae revealed that it shares 78 %, 77 %, 74 % and 66 % sequence identity with these parasites, respectively. The high GC content in at least 9 maxicircle genes of T. lewisi (ATPase6; NADH dehydrogenase subunits ND3, ND7, ND8 and ND9; G-rich regions GR3 and GR4; cytochrome oxidase subunit COIII and ribosomal protein RPS12) implies that their products may be extensively edited. A detailed analysis of the non-coding region revealed that it contains numerous repeat motifs and palindromes. CONCLUSIONS We have sequenced and comprehensively annotated the kinetoplast maxicircle of T. lewisi. Our analysis reveals that T. lewisi is closely related to T. cruzi and T. brucei, and may share similar RNA editing patterns with them rather than with L. tarentolae. These findings provide novel insight into the biological features of this emerging human pathogen

    Gluten Induces Subtle Histological Changes in Duodenal Mu-cosa of Patients with Non-Coeliac Gluten Sensitivity: A Multi-center Study

    Get PDF
    Histological changes induced by gluten in the duodenal mucosa of patients with non-coeliac gluten sensitivity (NCGS) are poorly defined. Objectives: To evaluate the structural and inflammatory features of NCGS compared to controls and coeliac disease (CeD) with milder enteropathy (Marsh I-II). Methods: Well-oriented biopsies of 262 control cases with normal gastroscopy and histologic findings, 261 CeD, and 175 NCGS biopsies from 9 contributing countries were examined. Villus height (VH, in μm), crypt depth (CrD, in μm), villus-to-crypt ratios (VCR), IELs (intraepithelial lymphocytes/100 enterocytes), and other relevant histological, serologic, and demographic parameters were quantified. Results: The median VH in NCGS was significantly shorter (600, IQR: 400−705) than controls (900, IQR: 667−1112) (p < 0.001). NCGS patients with Marsh I-II had similar VH and VCR to CeD [465 µm (IQR: 390−620) vs. 427 µm (IQR: 348−569, p = 0·176)]. The VCR in NCGS with Marsh 0 was lower than controls (p < 0.001). The median IEL in NCGS with Marsh 0 was higher than controls (23.0 vs. 13.7, p < 0.001). To distinguish Marsh 0 NCGS from controls, an IEL cut-off of 14 showed 79% sensitivity and 55% specificity. IEL densities in Marsh I-II NCGS and CeD groups were similar. Conclusion: NCGS duodenal mucosa exhibits distinctive changes consistent with an intestinal response to luminal antigens, even at the Marsh 0 stage of villus architecture

    Capturing Air–Water Interface Biofilms for Microscopy and Molecular Analysis

    No full text

    Influence of the Endothelial Glycocalyx on Cerebral Blood Flow in Mice

    No full text
    corecore