22 research outputs found

    Basic science of osteoarthritis

    Get PDF
    Osteoarthritis (OA) is a prevalent, disabling disorder of the joints that affects a large population worldwide and for which there is no definitive cure. This review provides critical insights into the basic knowledge on OA that may lead to innovative end efficient new therapeutic regimens. While degradation of the articular cartilage is the hallmark of OA, with altered interactions between chondrocytes and compounds of the extracellular matrix, the subchondral bone has been also described as a key component of the disease, involving specific pathomechanisms controlling its initiation and progression. The identification of such events (and thus of possible targets for therapy) has been made possible by the availability of a number of animal models that aim at reproducing the human pathology, in particular large models of high tibial osteotomy (HTO). From a therapeutic point of view, mesenchymal stem cells (MSCs) represent a promising option for the treatment of OA and may be used concomitantly with functional substitutes integrating scaffolds and drugs/growth factors in tissue engineering setups. Altogether, these advances in the fundamental and experimental knowledge on OA may allow for the generation of improved, adapted therapeutic regimens to treat human OA.(undefined

    An intron polymorphism of the fibronectin gene is associated with end-stage knee osteoarthritis in a Han Chinese population: two independent case-control studies

    Get PDF
    BACKGROUND: Knee osteoarthritis (OA) is a complex disease involving both biomechanical and metabolic factors that alter the tissue homeostasis of articular cartilage and subchondral bone. The catabolic activities of extracellular matrix degradation products, especially fibronectin (FN), have been implicated in mediating cartilage degradation. Chondrocytes express several members of the integrin family which can serve as receptors for FN including integrins α5β1, αvβ3, and αvβ5. The purpose of this study was to determine whether polymorphisms in the FN (FN-1) and integrin genes are markers of susceptibility to, or severity of, knee OA in a Han Chinese population. METHODS: Two independent case–control studies were conducted on 928 patients with knee OA and 693 healthy controls. Ten single nucleotide polymorphisms (SNPs) of FN-1 and the integrin αV gene (ITGAV) were detected using the ABI 7500 real-time PCR system. RESULTS: The AT heterozygote in FN-1 (rs940739A/T) was found to be significantly associated with knee OA (adjusted OR = 1.44; 95% CI = 1.16–1.80) in both stages of the study. FN-1 rs6725958C/A and ITGAV rs10174098A/G SNPs were only associated with knee OA when both study groups were combined. Stratifying the participants by Kellgren-Lawrence (KL) score identified significant differences in the FN-1 rs6725958C/A and rs940739 A/T genotypes between patients with grade 4 OA and controls. Haplotype analyses revealed that TGA and TAA were associated with a higher risk of OA, and that TAG conferred a lower risk of knee OA in the combined population. CONCLUSIONS: Our study suggests that the FN-1 rs940739A/T polymorphism may be an important risk factor of genetic susceptibility to knee OA in the Han Chinese population

    Porous silk scaffolds can be used for tissue engineering annulus fibrosus

    No full text
    There is no optimal treatment for symptomatic degenerative disc disease which affects millions of people worldwide. One novel approach would be to form a patch or tissue replacement to repair the annulus fibrosus (AF) through which the NP herniates. As the optimal scaffold for this has not been defined the purpose of this study was to determine if porous silk scaffolds would support AF cell attachment and extracellular matrix accumulation and whether chemically decorating the scaffold with RGD peptide, which has been shown to enhance attachment for other cell types, would further improve AF cell attachment and tissue formation. Annulus fibrosus cells were isolated from bovine caudal discs and seeded into porous silk scaffolds. The percent cell attachment was quantified and the cell morphology and distribution within the scaffold was evaluated using scanning electron microscopy. The cell-seeded scaffolds were grown for up to 8 weeks and evaluated for gene expression, histological appearance and matrix accumulation. AF cells attach to porous silk scaffolds, proliferate and synthesize and accumulate extracellular matrix as demonstrated biochemically and histologically. Coupling the silk scaffold with RGD-peptides did not enhance cell attachment nor tissue formation but did affect cell morphology. As well, the cells had higher levels of type II collagen and aggrecan gene expression when compared to cells grown on the non-modified scaffold, a feature more in keeping with cells of the inner annulus. Porous silk is an appropriate scaffold on which to grow AF cells. Coupling RGD peptide to the scaffold appears to influence AF cell phenotype suggesting that it may be possible to select an appropriate scaffold that favours inner annulus versus outer annulus differentiation which will be important for tissue engineering an intervertebral disc
    corecore