2,220 research outputs found

    Evaluation of 3D printed PCL/PLGA/beta-TCP versus collagen membranes for guided bone regeneration in a beagle implant model

    Get PDF
    Here, we compared 3D-printed polycaprolactone/poly(lactic-co-glycolic acid)/beta-tricalcium phosphate (PCL/PLGA/beta-TCP) membranes with the widely used collagen membranes for guided bone regeneration (GBR) in beagle implant models. For mechanical property comparison in dry and wet conditions and cytocompatibility determination, we analyzed the rate and pattern of cell proliferation of seeded fibroblasts and preosteoblasts using the cell counting kit-8 assay and scanning electron microscopy. Osteogenic differentiation was verified using alizarin red S staining. At 8 weeks following implantation in vivo using beagle dogs, computed tomography and histological analyses were performed after sacrifice. Cell proliferation rates in vitro indicated that early cell attachment was higher in collagen than in PCL/PLGA/beta-TCP membranes; however, the difference subsided by day 7. Similar outcomes were found for osteogenic differentiation, with approximately 2.5 times greater staining in collagen than PCL/PLGA/beta-TCP, but without significant difference by day 14. In vivo, bone regeneration in the defect area, represented by new bone formation and bone-to-implant contact, paralleled those associated with collagen membranes. However, tensile testing revealed that whereas the PCL/PLGA/beta-TCP membrane mechanical properties were conserved in both wet and dry states, the tensile property of collagen was reduced by 99% under wet conditions. Our results demonstrate in vitro and in vivo that PCL/PLGA/beta-TCP membranes have similar levels of biocompatibility and bone regeneration as collagen membranes. In particular, considering that GBR is always applied to a wet environment (e.g. blood, saliva), we demonstrated that PCL/PLGA/beta-TCP membranes maintained their form more reliably than collagen membranes in a wet setting, confirming their appropriateness as a GBR membrane.11109Ysciescopu

    Integrated analysis of global proteome, phosphoproteome, and glycoproteome enables complementary interpretation of disease-related protein networks

    Get PDF
    Multi-dimensional proteomic analyses provide different layers of protein information, including protein abundance and post-translational modifications. Here, we report an integrated analysis of protein expression, phosphorylation, and N-glycosylation by serial enrichments of phosphorylation and N-glycosylation (SEPG) from the same tissue samples. On average, the SEPG identified 142,106 unmodified peptides of 8,625 protein groups, 18,846 phosphopeptides (15,647 phosphosites), and 4,019 N-glycopeptides (2,634 N-glycosites) in tumor and adjacent normal tissues from three gastric cancer patients. The combined analysis of these data showed that the integrated analysis additively improved the coverages of gastric cancer-related protein networks; phosphoproteome and N-glycoproteome captured predominantly low abundant signal proteins, and membranous or secreted proteins, respectively, while global proteome provided abundances for general population of the proteome. Therefore, our results demonstrate that the SEPG can serve as an effective approach for multi-dimensional proteome analyses, and the holistic profiles of protein expression and PTMs enabled improved interpretation of disease-related networks by providing complementary information.11103Ysciescopu

    Value-added Synthesis of Graphene: Recycling Industrial Carbon Waste into Electrodes for High-Performance Electronic Devices

    Get PDF
    We have developed a simple, scalable, transfer-free, ecologically sustainable, value-added method to convert inexpensive coal tar pitch to patterned graphene films directly on device substrates. The method, which does not require an additional transfer process, enables direct growth of graphene films on device substrates in large area. To demonstrate the practical applications of the graphene films, we used the patterned graphene grown on a dielectric substrate directly as electrodes of bottom-contact pentacene field-effect transistors (max. field effect mobility similar to 0.36 cm(2).V-1.s(-1)), without using any physical transfer process. This use of a chemical waste product as a solid carbon source instead of commonly used explosive hydrocarbon gas sources for graphene synthesis has the dual benefits of converting the waste to a valuable product, and reducing pollution.111714Ysciescopu

    Deguelin Restores Paclitaxel Sensitivity in Paclitaxel-Resistant Ovarian Cancer Cells via Inhibition of the EGFR Signaling Pathway

    Get PDF
    Seunghee Bae,1 Sowon Bae,1 Hee Su Kim,1 Ye Jin Lim,1 Gyeongmi Kim,2 In-Chul Park,2 Kyeong A So,3 Tae Jin Kim,3 Jae Ho Lee1 1Department of Cosmetics Engineering, Konkuk University, Seoul, 05029, Republic of Korea; 2Division of Fusion Radiology Research, Korea Institute of Radiological & Medical Sciences, Seoul, 01812, Republic of Korea; 3Department of Obstetrics and Gynecology, Konkuk University School of Medicine, Seoul, 05030, Republic of KoreaCorrespondence: Jae Ho Lee, Department of Cosmetics Engineering, Konkuk University, Seoul, 05029, Republic of Korea, Email [email protected]: Ovarian cancer is one of women’s malignancies with the highest mortality among gynecological cancers. Paclitaxel is used in first-line ovarian cancer chemotherapy. Research on paclitaxel-resistant ovarian cancer holds significant clinical importance.Methods: Cell viability and flow cytometric assays were conducted at different time and concentration points of deguelin and paclitaxel treatment. Immunoblotting was performed to assess the activation status of key signaling molecules important for cell survival and proliferation following treatment with deguelin and paclitaxel. The fluo-3 acetoxymethyl assay for P-glycoprotein transport activity assay and cell viability assay in the presence of N-acetyl-L-cysteine were also conducted.Results: Cell viability and flow cytometric assays demonstrated that deguelin resensitized paclitaxel in a dose- and time-dependent manner. Cotreatment with deguelin and paclitaxel inhibited EGFR and its downstream signaling molecules, including AKT, ERK, STAT3, and p38 MAPK, in SKOV3-TR cells. Interestingly, cotreatment with deguelin and paclitaxel suppressed the expression level of EGFR via the lysosomal degradation pathway. Cotreatment did not affect the expression and function of P-glycoprotein. N-acetyl-L-cysteine failed to restore cell cytotoxicity when used in combination with deguelin and paclitaxel in SKOV3-TR cells. The expression of BCL-2, MCL-1, and the phosphorylation of the S155 residue of BAD were downregulated. Moreover, inhibition of paclitaxel resistance by deguelin was also observed in HeyA8-MDR cells.Conclusion: Our research showed that deguelin effectively suppresses paclitaxel resistance in SKOV3-TR ovarian cancer cells by downregulating the EGFR and its downstream signaling pathway and modulating the BCL-2 family proteins. Furthermore, deguelin exhibits inhibitory effects on paclitaxel resistance in HeyA8-MDR ovarian cancer cells, suggesting a potential mechanism for paclitaxel resensitization that may not be cell-specific. These findings suggest that deguelin holds promise as an anticancer therapeutic agent for overcoming chemoresistance in ovarian cancer. Keywords: ovarian cancer, paclitaxel-resistance, deguelin, EGFR, AK

    Effects of Four Host Plants on Biology and Food Utilization of the Cutworm, Spodoptera litura

    Get PDF
    Effects of four host plants, tobacco, Chinese cabbage, cowpea and sweet potato, on larval and pupal development and survival, and longevity and fecundity of adults of Spodoptera litura (F) (Lepidoptera: Noctuidae), were studied under laboratory conditions (26° C, 60–80% RH), as was the utilization of the four host plants and adaptation on tobacco. All of the biological parameters included in the study were affected by the host plants. In a choice test, S. litura females oviposited most on Chinese cabbage, least on tobacco, and intermediate on cowpea and sweet potato. S. litura larvae developed differently on the four host plants, from shortest to longest in the following order: Chinese cabbage, cowpea, sweet potato, and tobacco. Pupal development was shorter on cowpea than on the other three host plants, and males generally developed longer than females. More females than males were found among emerged adults, and male adults lived 1–2 d longer than females. Larvae survived best on cowpea (81.6%), followed by Chinese cabbage (75.5%), then sweet potato (66.1%), and worst on tobacco (49.2%). Pupal survival rates were relatively high (91.4 – 95.9%) in all four host plant treatments, although that on sweet potato was lower than those on the other three host plants. Pupal weights on tobacco and sweet potato were similar, but both were lower than those on Chinese cabbage and cowpea. Generally, male pupae weighed less than female pupae. Numbers of eggs oviposited by female S. litura were highest on sweet potato, followed by those on cowpea, Chinese cabbage, and lowest on tobacco. Relative food consumption rate was highest on sweet potato, followed by that on cowpea, Chinese cabbage, and lowest on tobacco. In contrast, S. litura larvae that fed on tobacco had higher efficiency of conversion of digested food, highest efficiency of conversion of ingested food, and lowest approximate digestibility as compared with larvae that fed on other host plants. The potential causes for S. litura outbreaks on tobacco are discussed

    DNA resection in eukaryotes: deciding how to fix the break

    Get PDF
    DNA double-strand breaks are repaired by different mechanisms, including homologous recombination and nonhomologous end-joining. DNA-end resection, the first step in recombination, is a key step that contributes to the choice of DSB repair. Resection, an evolutionarily conserved process that generates single-stranded DNA, is linked to checkpoint activation and is critical for survival. Failure to regulate and execute this process results in defective recombination and can contribute to human disease. Here, I review recent findings on the mechanisms of resection in eukaryotes, from yeast to vertebrates, provide insights into the regulatory strategies that control it, and highlight the consequences of both its impairment and its deregulation

    Direct exfoliation and dispersion of two-dimensional materials in pure water via temperature control

    Get PDF
    The high-volume synthesis of two-dimensional (2D) materials in the form of platelets is desirable for various applications. While water is considered an ideal dispersion medium, due to its abundance and low cost, the hydrophobicity of platelet surfaces has prohibited its widespread use. Here we exfoliate 2D materials directly in pure water without using any chemicals or surfactants. In order to exfoliate and disperse the materials in water, we elevate the temperature of the sonication bath, and introduce energy via the dissipation of sonic waves. Storage stability greater than one month is achieved through the maintenance of high temperatures, and through atomic and molecular level simulations, we further discover that good solubility in water is maintained due to the presence of platelet surface charges as a result of edge functionalization or intrinsic polarity. Finally, we demonstrate inkjet printing on hard and flexible substrates as a potential application of water-dispersed 2D materials.close1

    Symptomatic snapping knee from biceps femoris tendon subluxation: an unusual case of lateral pain in a marathon runner

    Get PDF
    Snapping biceps femoris syndrome is an uncommon cause of lateral knee pain and may be difficult to diagnose, resulting in unsuccessful surgical intervention. In this report, we present an unusual case of a 37-year-old male marathon runner with unilateral snapping knee secondary to dislocation of the long head of the biceps femoris over the fibular head during knee flexion. The pain was great enough to interfere with his ability to practice sport. Possible causes of symptomatic snapping knee include multiple intra-articular or extra-articular pathology. Biceps femoris snapping over the fibular head is a rare condition. Reported causes include an anomalous insertion of the tendon into the tibia, trauma, and fibular-head abnormality. However, none of those conditions accounted for his symptoms. Failing conservative treatment, the patient underwent surgery for partial resection of the fibular head, with subsequent sudden resolution of symptoms and return to sport. Accurate knowledge and management of this rare condition is mandatory to avoid inappropriate therapy and unnecessary surgical procedures
    corecore