5,112 research outputs found

    Do maternal and child health promote economic development? A case study of six sub-Saharan African countries

    Get PDF
    Economic development leads to improved health for both women and children through advances in the field of medicine, reduction in mortality rates, and increase in life expectancy. Similarly, optimum maternal and child health are instrumental in human capital formation and productivity, with the potential for economic development. However, the majority of previously published research has focused on the impact of economic development on maternal and child health and rarely examines the reverse relationship (that is, the impact of child and maternal health on economic development), especially in sub-Saharan Africa (SSA). Therefore, the objective of this study was to determine the magnitude of the impact of maternal and child health on economic development (Gross Domestic Product (GDP) per capita), and vice versa, using a 10- year horizon and variance decompositions, for six countries in SSA. These countries, Burkina Faso, Togo, Ghana, Ivory Coast, Botswana and South Africa were grouped according to income brackets. Analyses were all based on Vector Auto Regression models and conducted on annual time-series data from the World Development Indicator data set, 1960-2012. The proxies for child health and maternal health were infant mortality rate and life expectancy at birth for females (in years), respectively. The magnitude of the contribution of child health to GDP per capita was generally higher than vice versa across countries in all income groups: Burkina Faso (41.7% vs 11.6%), Togo (12.2% vs 27.1%), Ghana (17.3% vs 7.8%), Ivory Coast (16.4% vs 9.7%), Botswana (33.4% vs 0.6%) and South Africa (29.3% vs 2.7%). The magnitude of the contribution of maternal health to GDP per capita was higher than the impact of the reverse relationship for the lower middle-income countries of Ghana (10.6% vs 2.4%) and Ivory Coast (82.3% vs 0.1%) and the upper middle-income countries of Botswana (2.3% vs 1.5%) and South Africa (25.6% vs 0.1%). However, the magnitude of the effect of GDP per capita on maternal health was higher than the other way around only for the lower income countries of Burkina Faso (27.9% vs 1.1%) and Togo (30.0% vs 3.8%). This study adds further policy support for improving maternal and child health to achieve substantial benefits on long-term economic growth in SSA.Key words: Maternal health, child health, economic development, sub-Saharan Africa, GDP per capit

    On CSP and the Algebraic Theory of Effects

    Full text link
    We consider CSP from the point of view of the algebraic theory of effects, which classifies operations as effect constructors or effect deconstructors; it also provides a link with functional programming, being a refinement of Moggi's seminal monadic point of view. There is a natural algebraic theory of the constructors whose free algebra functor is Moggi's monad; we illustrate this by characterising free and initial algebras in terms of two versions of the stable failures model of CSP, one more general than the other. Deconstructors are dealt with as homomorphisms to (possibly non-free) algebras. One can view CSP's action and choice operators as constructors and the rest, such as concealment and concurrency, as deconstructors. Carrying this programme out results in taking deterministic external choice as constructor rather than general external choice. However, binary deconstructors, such as the CSP concurrency operator, provide unresolved difficulties. We conclude by presenting a combination of CSP with Moggi's computational {\lambda}-calculus, in which the operators, including concurrency, are polymorphic. While the paper mainly concerns CSP, it ought to be possible to carry over similar ideas to other process calculi

    Approximate min-max relations on plane graphs

    Get PDF
    Let G be a plane graph, let τ(G) (resp. τ′(G)) be the minimum number of vertices (resp. edges) that meet all cycles of G, and let ν(G) (resp. ν′(G)) be the maximum number of vertex-disjoint (resp. edge-disjoint) cycles in G. In this note we show that τ(G)≤3 ν(G) and τ′(G)≤4 ν′(G)-1; our proofs are constructive, which yield polynomial-time algorithms for finding corresponding objects with the desired properties. © 2011 The Author(s).published_or_final_versionSpringer Open Choice, 28 May 201

    Clinical biological and genetic heterogeneity of the inborn errors of pulmonary surfactant metabolism

    Get PDF
    Pulmonary surfactant is a multimolecular complex located at the air-water interface within the alveolus to which a range of physical (surface-active properties) and immune functions has been assigned. This complex consists of a surface-active lipid layer (consisting mainly of phospholipids), and of an aqueous subphase. From discrete surfactant sub-fractions one can isolate strongly hydrophobic surf acta nt proteins B (SP-B) and C (SP-C) as well as collectins SP-A and SP-D, which were shown to have specific structural, metabolic, or immune properties. Inborn or acquired abnormalities of the surfactant, qualitative or quantitative in nature, account for a number of human diseases. Beside hyaline membrane disease of the preterm neonate, a cluster of hereditary or acquired lung diseases has been characterized by periodic acid-Schiff-positive material filling the alveoli. From this heterogeneous nosologic group, at least two discrete entities presently emerge. The first is the SP-B deficiency, in which an essentially proteinaceous material is stored within the alveoli, and which represents an autosomal recessive Mendelian entity linked to the SFTPB gene (MIM 1786640). The disease usually generally entails neonatal respiratory distress with rapid fatal outcome, although partial or transient deficiencies have also been observed. The second is alveolar proteinosis, characterized by the storage of a mixed protein and lipid material, which constitutes a relatively heterogeneous clinical and biological syndrome, especially with regard to age at onset (from the neonate through to adulthood) as well as the severity of associated signs. Murine models, with a targeted mutation of the gene encoding granulocyte macrophage colony-stimulating factor (GM-CSF) (Csfgm) or the beta subunit of its receptor (II3rb1) support the hypothesis of an abnormality of surfactant turnover in which the alveolar macrophage is a key player. Apart from SP-B deficiency, in which a near-consensus diagnostic chart can be designed, the ascertainment of other abnormalities of surfactant metabolism is not straightforward. The disentanglement of this disease cluster is however essential to propose specific therapeutic procedures: repeated broncho-alveolar ravages, GM-CSF replacement, bone marrow grafting or lung transplantation

    Quantum Non-demolition Detection of Single Microwave Photons in a Circuit

    Get PDF
    Thorough control of quantum measurement is key to the development of quantum information technologies. Many measurements are destructive, removing more information from the system than they obtain. Quantum non-demolition (QND) measurements allow repeated measurements that give the same eigenvalue. They could be used for several quantum information processing tasks such as error correction, preparation by measurement, and one-way quantum computing. Achieving QND measurements of photons is especially challenging because the detector must be completely transparent to the photons while still acquiring information about them. Recent progress in manipulating microwave photons in superconducting circuits has increased demand for a QND detector which operates in the gigahertz frequency range. Here we demonstrate a QND detection scheme which measures the number of photons inside a high quality-factor microwave cavity on a chip. This scheme maps a photon number onto a qubit state in a single-shot via qubit-photon logic gates. We verify the operation of the device by analyzing the average correlations of repeated measurements, and show that it is 90% QND. It differs from previously reported detectors because its sensitivity is strongly selective to chosen photon number states. This scheme could be used to monitor the state of a photon-based memory in a quantum computer.Comment: 5 pages, 4 figures, includes supplementary materia

    A bioassay system of autologous human endothelial, smooth muscle cells and leucocytes for use in drug discovery, phenotyping and tissue engineering

    Get PDF
    Purpose: Blood vessels are comprised of endothelial and smooth muscle cells. Obtaining both types of cells from vessels of living donors is not possible without invasive surgery. To address this we have devised a strategy whereby human endothelial and smooth muscle cells derived from blood progenitors from the same donor could be cultured with autologous leucocytes to generate a same donor ‘vessel in a dish’ bioassay. Basic procedures: Autologous sets of blood outgrowth endothelial cells (BOECs), smooth muscle cells (BO-SMCs) and leucocytes were obtained from 4 donors. Cells were treated in mono and cumulative co-culture conditions. The endothelial specific mediator endothelin-1 along with interleukin (IL)-6, IL-8, tumour necrosis factor α, and interferon gamma-induced protein 10 were measured under control culture conditions and after stimulation with cytokines. Main findings: Co-cultures remained viable throughout. The profile of individual mediators released from cells was consistent with what we know of endothelial and smooth muscle cells cultured from blood vessels. Principle conclusions: For the first time, we report a proof of concept study where autologous blood outgrowth ‘vascular’ cells and leucocytes were studied alone and in co-culture. This novel bioassay has utility in vascular biology research, patient phenotyping, drug testing and tissue engineering

    FKBP51 increases the tumour‐promoter potential of TGF‐beta

    Full text link

    Simple model of big-crunch/big-bang transition

    Full text link
    We present classical and quantum dynamics of a test particle in the compactified Milne space. Background spacetime includes one compact space dimension undergoing contraction to a point followed by expansion. Quantization consists in finding a self-adjoint representation of the algebra of particle observables. Our model offers some insight into the nature of the cosmic singularity.Comment: 17 pages, no figures, RevTeX4, accepted for publication in Class. Quantum Gra
    corecore