9 research outputs found

    Timbre variations as an attribute of naturalness in clarinet play

    No full text
    A digital clarinet played by a human and timed by a metronome was used to record two playing control parameters, the breath control and the reed displacement, for 20 repeated performances. The regular behaviour of the parameters was extracted by averaging and the fluctuation was quantified by the standard deviation. It was concluded that the movement of the parameters seem to follow rules. When removing the fluctuations of the parameters by averaging over the repetitions, the result sounded less expressive, although it still seemed to be played by a human. The variation in timbre during the play, in particular within a note's duration, was observed and then fixed while the natural temporal envelope was kept. The result seemed unnatural, indicating that the variation of timbre is important for the naturalness

    Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis.

    No full text
    Ustilago maydis is a ubiquitous pathogen of maize and a well-established model organism for the study of plant-microbe interactions. This basidiomycete fungus does not use aggressive virulence strategies to kill its host. U. maydis belongs to the group of biotrophic parasites (the smuts) that depend on living tissue for proliferation and development. Here we report the genome sequence for a member of this economically important group of biotrophic fungi. The 20.5-million-base U. maydis genome assembly contains 6,902 predicted protein-encoding genes and lacks pathogenicity signatures found in the genomes of aggressive pathogenic fungi, for example a battery of cell-wall-degrading enzymes. However, we detected unexpected genomic features responsible for the pathogenicity of this organism. Specifically, we found 12 clusters of genes encoding small secreted proteins with unknown function. A significant fraction of these genes exists in small gene families. Expression analysis showed that most of the genes contained in these clusters are regulated together and induced in infected tissue. Deletion of individual clusters altered the virulence of U. maydis in five cases, ranging from a complete lack of symptoms to hypervirulence. Despite years of research into the mechanism of pathogenicity in U. maydis, no 'true' virulence factors had been previously identified. Thus, the discovery of the secreted protein gene clusters and the functional demonstration of their decisive role in the infection process illuminate previously unknown mechanisms of pathogenicity operating in biotrophic fungi. Genomic analysis is, similarly, likely to open up new avenues for the discovery of virulence determinants in other pathogens. ©2006 Nature Publishing Group
    corecore