848 research outputs found
A note on resistance to Hessian fly (Mayetiola destructor) [Diptera : Cecidomyidae] biotype L in tribe Triticeae
Quarante et une accessions de blés primitifs et indigènes (Triticum spp.), 16 accessions du genre Aegilops et 20 accessions ou cultivars du genre Agropyron ont été évaluées pour la première fois pour leur réaction au biotype L de la mouche de Hesse (Mayetiola destructor). Trois accessions du Triticum monococcum, 13 accessions du genre Aegilops et 13 accessions ou cultivars du genre Agropyron ont été trouvées résistantes de façon homogène. L'antibiose s'est manifestée dans certains cas mais dans certains autres, il est apparu une résistance physique attribuable à la présence de la pubescence foliaire ou de la ligule. La pubescence du Triticum boeoticum n'a pas été efficace afin de procurer de la résistance.Forty-one accessions of primitive and wild wheats (Triticum species), 16 accessions of Aegilops species, and 20 accessions or cultivars of Agropyron species were evaluated for the first time for reaction to biotype L of Hessian fly (Mayetiola destructor). Three accessions of Triticum monococcum, 13 accessions of Aegilops species, and 13 accessions or cultivars of Agropyron species were found homogeneously resistant. Antibiosis was operative in some cases but in others there appeared to be physical resistance due to the presence of leaf pubescence or ligule. Pubescence of Triticum boeoticum was not effective in providing resistance
Ferromagnetic Polarons in La0.5Ca0.5MnO3 and La0.33Ca0.67MnO3
Unrestricted Hartree-Fock calculations on La0.5Ca0.5MnO3 and La0.33Ca0.67MnO3
in the full magnetic unit cell show that the magnetic ground states of these
compounds consist of 'ferromagnetic molecules' or polarons ordered in
herring-bone patterns. Each polaron consists of either three or five Mn ions
separated by O- ions with a magnetic moment opposed to those of the Mn ions.
Ferromagnetic coupling within the polarons is strong while coupling between
them is relatively weak. Magnetic moments on the Mn ions range between 3.8 and
3.9 Bohr magnetons in La0.5Ca0.5MnO3 and moments on the O- ions are -0.7 Bohr
magnetons. Each polaron has a net magnetic moment of 7.0 Bohr magnetons, in
good agreement with recently reported magnetisation measurements from electron
microscopy. The polaronic nature of the electronic structure reported here is
obviously related to the Zener polaron model recently proposed for
Pr0.6Ca0.4MnO3 on the basis of neutron scattering data.Comment: 4 pages 5 figure
Transient Magnetic and Doppler Features Related to the White-light Flares in NOAA 10486
Rapidly moving transient features have been detected in magnetic and Doppler
images of super-active region NOAA 10486 during the X17/4B flare of 28 October
2003 and the X10/2B flare of 29 October 2003. Both these flares were extremely
energetic white-light events. The transient features appeared during impulsive
phases of the flares and moved with speeds ranging from 30 to 50 km s.
These features were located near the previously reported compact acoustic
\cite{Donea05} and seismic sources \cite{Zharkova07}. We examine the origin of
these features and their relationship with various aspects of the flares, {\it
viz.}, hard X-ray emission sources and flare kernels observed at different
layers - (i) photosphere (white-light continuum), (ii) chromosphere (H
6563\AA), (iii) temperature minimum region (UV 1600\AA), and (iv) transition
region (UV 284\AA).Comment: 26 pages, 13 figures, 2 tables, accepted for publication in Solar
Physic
Dynamical mean-field approach to materials with strong electronic correlations
We review recent results on the properties of materials with correlated
electrons obtained within the LDA+DMFT approach, a combination of a
conventional band structure approach based on the local density approximation
(LDA) and the dynamical mean-field theory (DMFT). The application to four
outstanding problems in this field is discussed: (i) we compute the full
valence band structure of the charge-transfer insulator NiO by explicitly
including the p-d hybridization, (ii) we explain the origin for the
simultaneously occuring metal-insulator transition and collapse of the magnetic
moment in MnO and Fe2O3, (iii) we describe a novel GGA+DMFT scheme in terms of
plane-wave pseudopotentials which allows us to compute the orbital order and
cooperative Jahn-Teller distortion in KCuF3 and LaMnO3, and (iv) we provide a
general explanation for the appearance of kinks in the effective dispersion of
correlated electrons in systems with a pronounced three-peak spectral function
without having to resort to the coupling of electrons to bosonic excitations.
These results provide a considerable progress in the fully microscopic
investigations of correlated electron materials.Comment: 24 pages, 14 figures, final version, submitted to Eur. Phys. J. for
publication in the Special Topics volume "Cooperative Phenomena in Solids:
Metal-Insulator Transitions and Ordering of Microscopic Degrees of Freedom
Measurement of the B-Meson Inclusive Semileptonic Branching Fraction and Electron-Energy Moments
We report a new measurement of the B-meson semileptonic decay momentum
spectrum that has been made with a sample of 9.4/fb of electron-positron
annihilation data collected with the CLEO II detector at the Y(4S) resonance.
Electrons from primary semileptonic decays and secondary charm decays were
separated by using charge and angular correlations in Y(4S) events with a
high-momentum lepton and an additional electron. We determined the semileptonic
branching fraction to be (10.91 +- 0.09 +- 0.24)% from the normalization of the
electron-energy spectrum. We also measured the moments of the electron energy
spectrum with minimum energies from 0.6 GeV to 1.5 GeV.Comment: 36 pages postscript, als available through
http://w4.lns.cornell.edu/public/CLNS/, Submitted to PRD (back-to-back with
preceding preprint hep-ex/0403052
Anti-Search for the Glueball Candidate f_J(2220) in Two-Photon Interactions
Using 13.3 fb^{-1} of e^+e^- data recorded with the CLEO II and CLEO II.V
detector configurations at CESR, we have searched for f_J(2220) decays to
K^0_{S} K^0_{S} in untagged two-photon interactions. We report an upper limit
on the product of the two-photon partial width and the branching fraction,
Gamma_gamma gamma cdot B (f_J(2220) to K^0_{S} K^0_{S}) of less than 1.1 eV at
the 95% C.L: systematic uncertainties are included. This dataset is four times
larger than that used in the previous CLEO publication.Comment: 10 pages postscript, also available through
http://w4.lns.cornell.edu/public/CLNS, Submitted to PRD (R
Observation of a Narrow Resonance of Mass 2.46 GeV/c^2 Decaying to D_s^*+ pi^0 and Confirmation of the D_sJ^* (2317) State
Using 13.5 inverse fb of e+e- annihilation data collected with the CLEO II
detector we have observed a narrow resonance in the Ds*+pi0 final state, with a
mass near 2.46 GeV. The search for such a state was motivated by the recent
discovery by the BaBar Collaboration of a narrow state at 2.32 GeV, the
DsJ*(2317)+ that decays to Ds+pi0. Reconstructing the Ds+pi0 and Ds*+pi0 final
states in CLEO data, we observe peaks in both of the corresponding
reconstructed mass difference distributions, dM(Dspi0)=M(Dspi0)-M(Ds) and
dM(Ds*pi0)=M(Ds*pi0)-M(Ds*), both of them at values near 350 MeV. We interpret
these peaks as signatures of two distinct states, the DsJ*(2317)+ plus a new
state, designated as the DsJ(2463)+. Because of the similar dM values, each of
these states represents a source of background for the other if photons are
lost, ignored or added. A quantitative accounting of these reflections confirms
that both states exist. We have measured the mean mass differences
= 350.0 +/- 1.2 [stat] +/- 1.0 [syst] MeV for the DsJ*(2317) state, and
= 351.2 +/- 1.7 [stat] +/- 1.0 [syst] MeV for the new DsJ(2463)+
state. We have also searched, but find no evidence, for decays of the two
states via the channels Ds*+gamma, Ds+gamma, and Ds+pi+pi-. The observations of
the two states at 2.32 and 2.46 GeV, in the Ds+pi0 and Ds*+pi0 decay channels
respectively, are consistent with their interpretations as (c anti-strange)
mesons with orbital angular momentum L=1, and spin-parities of 0+ and 1+.Comment: 16 pages postscript, also available through
http://w4.lns.cornell.edu/public/CLNS, version to be published in Physical
Review D; minor modifications and fixes to typographical errors, plus an
added section on production properties. The main results are unchanged; they
supersede those reported in hep-ex/030501
Measurement of the Charge Asymmetry in
We report on a search for a CP-violating asymmetry in the charmless hadronic
decay B -> K*(892)+- pi-+, using 9.12 fb^-1 of integrated luminosity produced
at \sqrt{s}=10.58 GeV and collected with the CLEO detector. We find A_{CP}(B ->
K*(892)+- pi-+) = 0.26+0.33-0.34(stat.)+0.10-0.08(syst.), giving an allowed
interval of [-0.31,0.78] at the 90% confidence level.Comment: 7 pages postscript, also available through
http://w4.lns.cornell.edu/public/CLNS, submitted to PR
Study of the q^2-Dependence of B --> pi ell nu and B --> rho(omega)ell nu Decay and Extraction of |V_ub|
We report on determinations of |Vub| resulting from studies of the branching
fraction and q^2 distributions in exclusive semileptonic B decays that proceed
via the b->u transition. Our data set consists of the 9.7x10^6 BBbar meson
pairs collected at the Y(4S) resonance with the CLEO II detector. We measure
B(B0 -> pi- l+ nu) = (1.33 +- 0.18 +- 0.11 +- 0.01 +- 0.07)x10^{-4} and B(B0 ->
rho- l+ nu) = (2.17 +- 0.34 +0.47/-0.54 +- 0.41 +- 0.01)x10^{-4}, where the
errors are statistical, experimental systematic, systematic due to residual
form-factor uncertainties in the signal, and systematic due to residual
form-factor uncertainties in the cross-feed modes, respectively. We also find
B(B+ -> eta l+ nu) = (0.84 +- 0.31 +- 0.16 +- 0.09)x10^{-4}, consistent with
what is expected from the B -> pi l nu mode and quark model symmetries. We
extract |Vub| using Light-Cone Sum Rules (LCSR) for 0<= q^2<16 GeV^2 and
Lattice QCD (LQCD) for 16 GeV^2 <= q^2 < q^2_max. Combining both intervals
yields |Vub| = (3.24 +- 0.22 +- 0.13 +0.55/-0.39 +- 0.09)x10^{-3}$ for pi l nu,
and |Vub| = (3.00 +- 0.21 +0.29/-0.35 +0.49/-0.38 +-0.28)x10^{-3} for rho l nu,
where the errors are statistical, experimental systematic, theoretical, and
signal form-factor shape, respectively. Our combined value from both decay
modes is |Vub| = (3.17 +- 0.17 +0.16/-0.17 +0.53/-0.39 +-0.03)x10^{-3}.Comment: 45 pages postscript, also available through
http://w4.lns.cornell.edu/public/CLNS, submitted to PR
Observation of the Charmed Baryon Decays to , , and
We have observed two new decay modes of the charmed baryon into
and using data collected with the
CLEO II detector. We also present the first measurement of the branching
fraction for the previously observed decay mode . The branching fractions for these three modes relative to
are measured to be , , and , respectively.Comment: 12 page uuencoded postscript file, postscript file also available
through http://w4.lns.cornell.edu/public/CLN
- …