16,378 research outputs found

    Complementary Constraints on Brane Cosmology

    Full text link
    The acceleration of the expansion of the universe represents one of the major challenges to our current understanding of fundamental physics. In principle, to explain this phenomenon, at least two different routes may be followed: either adjusting the energy content of the Universe -- by introducing a negative-pressure dark energy -- or modifying gravity at very large scales -- by introducing new spatial dimensions, an idea also required by unification theories. In the cosmological context, the role of such extra dimensions as the source of the dark pressure responsable for the acceleration of our Universe is translated into the so-called brane world (BW) cosmologies. Here we study complementary constraints on a particular class of BW scenarios in which the modification of gravity arises due to a gravitational \emph{leakage} into extra dimensions. To this end, we use the most recent Chandra measurements of the X-ray gas mass fraction in galaxy clusters, the WMAP determinations of the baryon density parameter, measurements of the Hubble parameter from the \emph{HST}, and the current supernova data. In agreement with other recent results, it is shown that these models provide a good description for these complementary data, although a closed scenario is always favored in the joint analysis. We emphasize that observational tests of BW scenarios constitute a natural verification of the role of possible extra dimensions in both fundamental physics and cosmology.Comment: 6 Pages, 4 Figures, LaTe

    Angular dependence of the bulk nucleation field Hc2 of aligned MgB2 crystallites

    Full text link
    Studies on the new MgB2 superconductor, with a critical temperature Tc ~ 39 K, have evidenced its potential for applications although intense magnetic relaxation effects limit the critical current density, Jc, at high magnetic fields. This means that effective pinning centers must be added into the material microstructure, in order to halt dissipative flux movements. Concerning the basic microscopic mechanism to explain the superconductivity in MgB2, several experimental and theoretical works have pointed to the relevance of a phonon-mediated interaction, in the framework of the BCS theory. Questions have been raised about the relevant phonon modes, and the gap and Fermi surface anisotropies, in an effort to interpret spectroscopic and thermal data that give values between 2.4 and 4.5 for the gap energy ratio. Preliminary results on the anisotropy of Hc2 have shown a ratio, between the in-plane and perpendicular directions, around 1.7 for aligned MgB2 crystallites and 1.8 for epitaxial thin films. Here we show a study on the angular dependence of Hc2 pointing to a Fermi velocity anisotropy around 2.5. This anisotropy certainly implies the use of texturization techniques to optimize Jc in MgB2 wires and other polycrystalline components.Comment: 10 pages + 4 Figs.; Revised version accepted in Phys. Rev.

    Adiabatic decaying vacuum model for the universe

    Full text link
    We study a model that the entropy per particle in the universe is constant. The sources for the entropy are the particle creation and a lambda decaying term. We find exact solutions for the Einstein field equations and show the compatibilty of the model with respect to the age and the acceleration of the universe.Comment: 10 pages, 2 figure

    Exact solution of A-D Temperley-Lieb Models

    Full text link
    We solve for the spectrum of quantum spin chains based on representations of the Temperley-Lieb algebra associated with the quantum groups {\cal U}_q(X_n } for X_n = A_1,B_n,C_nand and D_n$. We employ a generalization of the coordinate Bethe-Ansatz developed previously for the deformed biquadratic spin one chain. As expected, all these models have equivalent spectra, i.e. they differ only in the degeneracy of their eigenvalues. This is true for finite length and open boundary conditions. For periodic boundary conditions the spectra of the lower dimensional representations are containded entirely in the higher dimensional ones. The Bethe states are highest weight states of the quantum group, except for some states with energy zero

    Classical and quantum dynamics of confined test particles in brane gravity

    Full text link
    A model is constructed for the confinement of test particles moving on a brane. Within the classical framework of this theory, confining a test particle to the brane eliminates the effects of extra dimensions, rendering them undetectable. However, in the quantized version of the theory, the effects of the gauge fields and extrinsic curvature are pronounced and this might provide a hint for detecting them. As a consequence of confinement the mass of the test particle is shown to be quantized. The condition of stability against small perturbations along extra dimensions is also studied and its relation to dark matter is discussed.Comment: 15 pages, no figures, extended, references adde

    Universality of the Ising and the S=1 model on Archimedean lattices: A Monte Carlo determination

    Full text link
    The Ising model S=1/2 and the S=1 model are studied by efficient Monte Carlo schemes on the (3,4,6,4) and the (3,3,3,3,6) Archimedean lattices. The algorithms used, a hybrid Metropolis-Wolff algorithm and a parallel tempering protocol, are briefly described and compared with the simple Metropolis algorithm. Accurate Monte Carlo data are produced at the exact critical temperatures of the Ising model for these lattices. Their finite-size analysis provide, with high accuracy, all critical exponents which, as expected, are the same with the well known 2d Ising model exact values. A detailed finite-size scaling analysis of our Monte Carlo data for the S=1 model on the same lattices provides very clear evidence that this model obeys, also very well, the 2d Ising model critical exponents. As a result, we find that recent Monte Carlo simulations and attempts to define effective dimensionality for the S=1 model on these lattices are misleading. Accurate estimates are obtained for the critical amplitudes of the logarithmic expansions of the specific heat for both models on the two Archimedean lattices.Comment: 9 pages, 11 figure

    Double butterfly spectrum for two interacting particles in the Harper model

    Full text link
    We study the effect of interparticle interaction UU on the spectrum of the Harper model and show that it leads to a pure-point component arising from the multifractal spectrum of non interacting problem. Our numerical studies allow to understand the global structure of the spectrum. Analytical approach developed permits to understand the origin of localized states in the limit of strong interaction UU and fine spectral structure for small UU.Comment: revtex, 4 pages, 5 figure

    Uncovering the kiloparsec-scale stellar ring of NGC5128

    Full text link
    We reveal the stellar light emerging from the kiloparsec-scale, ring-like structure of the NGC5128 (Centaurus A) galaxy in unprecedented detail. We use arcsecond-scale resolution near infrared images to create a "dust-free" view of the central region of the galaxy, which we then use to quantify the shape of the revealed structure. At the resolution of the data, the structure contains several hundreds of discreet, point-like or slightly elongated sources. Typical extinction corrected surface brightness of the structure is K_S = 16.5 mag/arcsec^2, and we estimate the total near infrared luminosity of the structure to be M = -21 mag. We use diffraction limited (FWHM resolution of ~ 0.1", or 1.6 pc) near infrared data taken with the NACO instrument on VLT to show that the structure decomposes into thousands of separate, mostly point-like sources. According to the tentative photometry, the most luminous sources have M_K = -12 mag, naming them red supergiants or relatively low-mass star clusters. We also discuss the large-scale geometry implied by the reddening signatures of dust in our near infrared images.Comment: 5 pages, 4 figures, accepted for publication in A&A Letters. A version with high resolution images can be downloaded from http://www.helsinki.fi/~jtkainul/CenALette

    Dependence of the flux creep activation energy on current density and magnetic field for MgB2 superconductor

    Get PDF
    Systematic ac susceptibility measurements have been performed on a MgB2_2 bulk sample. We demonstrate that the flux creep activation energy is a nonlinear function of the current density U(j)j0.2U(j)\propto j^{-0.2}, indicating a nonlogarithmic relaxation of the current density in this material. The dependence of the activation energy on the magnetic field is determined to be a power law U(B)B1.33U(B)\propto B^{-1.33}, showing a steep decline in the activation energy with the magnetic field, which accounts for the steep drop in the critical current density with magnetic field that is observed in MgB2_2. The irreversibility field is also found to be rather low, therefore, the pinning properties of this new material will need to be enhanced for practical applications.Comment: 11 pages, 6 figures, Revtex forma
    corecore