997 research outputs found

    Mindfulness in the focus of the neurosciences - The contribution of neuroimaging to the understanding of mindfulness.

    Get PDF
    Background Mindfulness affects human levels of experience by facilitating the immediate and impartial perception of phenomena, including sensory stimulation, emotions, and thoughts. Mindfulness is now a focus of neuroimaging, since technical and methodological developments in magnetic resonance imaging have made it possible to observe subjects performing mindfulness tasks. Objective We set out to describe the association between mental processes and characteristics of mindfulness, including their specific cerebral patterns, as shown in structural and functional neuroimaging studies. Methods We searched the MEDLINE databank of references and abstracts on life sciences and biomedical topics via PubMed using the keywords: "mindfulness," "focused attention (FA)," "open monitoring (OM)," "mind wandering," "emotional regulation," "magnetic resonance imaging (MRI)" and "default mode network (DMN)." This review extracted phenomenological experiences across populations with varying degrees of mindfulness training and correlated these experiences with structural and functional neuroimaging patterns. Our goal was to describe how mindful behavior was processed by the constituents of the default mode network during specific tasks. Results and conclusions Depending on the research paradigm employed to explore mindfulness, investigations of function that used fMRI exhibited distinct activation patterns and functional connectivities. Basic to mindfulness is a long-term process of learning to use meditation techniques. Meditators progress from voluntary control of emotions and subjective preferences to emotional regulation and impartial awareness of phenomena. As their ability to monitor perception and behavior, a metacognitive skill, improves, mindfulness increases self-specifying thoughts governed by the experiential phenomenological self and reduces self-relational thoughts of the narrative self. The degree of mindfulness (ratio of self-specifying to self-relational thoughts) may affect other mental processes, e.g., awareness, working memory, mind wandering and belief formation. Mindfulness prevents habituation and the constant assumptions associated with mindlessness. Self-specifying thinking during mindfulness and self-relational thinking in the narrative self relies on the default mode network. The main constituents of this network are the dorsal and medial prefrontal cortex, and posterior cingulate cortex. These midline structures are antagonistic to self-specifying and self-relational processes, since the predominant process determines their differential involvement. Functional and brain volume changes indicate brain plasticity, mediated by mental training over the long-term

    A rigorous analysis of high order electromagnetic invisibility cloaks

    Full text link
    There is currently a great deal of interest in the invisibility cloaks recently proposed by Pendry et al. that are based in the transformation approach. They obtained their results using first order transformations. In recent papers Hendi et al. and Cai et al. considered invisibility cloaks with high order transformations. In this paper we study high order electromagnetic invisibility cloaks in transformation media obtained by high order transformations from general anisotropic media. We consider the case where there is a finite number of spherical cloaks located in different points in space. We prove that for any incident plane wave, at any frequency, the scattered wave is identically zero. We also consider the scattering of finite energy wave packets. We prove that the scattering matrix is the identity, i.e., that for any incoming wave packet the outgoing wave packet is the same as the incoming one. This proves that the invisibility cloaks can not be detected in any scattering experiment with electromagnetic waves in high order transformation media, and in particular in the first order transformation media of Pendry et al. We also prove that the high order invisibility cloaks, as well as the first order ones, cloak passive and active devices. The cloaked objects completely decouple from the exterior. Actually, the cloaking outside is independent of what is inside the cloaked objects. The electromagnetic waves inside the cloaked objects can not leave the concealed regions and viceversa, the electromagnetic waves outside the cloaked objects can not go inside the concealed regions. As we prove our results for media that are obtained by transformation from general anisotropic materials, we prove that it is possible to cloak objects inside general crystals.Comment: The final version is now published in Journal of Physics A: Mathematical and Theoretical, vol 41 (2008) 065207 (21 pp). Included in IOP-Selec

    Nonlocal ultrafast demagnetization dynamics of Co/Pt multilayers by optical field enhancement

    Get PDF
    The influence on ultrafast demagnetization dynamics of metallic nano-structured gratings deposited on thin films of magnetic Co/Pt multilayers is investigated by the time-resolved optical Kerr effect. Depending on the polarization of the pump pulse, a pronounced enhancement of the demagnetization amplitude is found. Calculation of the inhomogeneous optical field distribution due to plasmon interaction and time-dependent solutions of the coupled electron, lattice, and spin temperatures in two dimensions show good agreement with the experimental data, as well as giving evidence of non-local demagnetization dynamics due to electron diffusion.BMBF, 05K10KTB, Verbundprojekt: FSP 301 - FLASH: Nanoskopische Systeme. Teilprojekt 1.1: Universelle Experimentierkammer für Streuexperimente mit kohärenten Femtosekunden-Röntgenpulsen Multi Purpose Coherent Scattering Chamber for FLASH and XFEL 'MPscatt

    Inverse Scattering at a Fixed Quasi-Energy for Potentials Periodic in Time

    Full text link
    We prove that the scattering matrix at a fixed quasi--energy determines uniquely a time--periodic potential that decays exponentially at infinity. We consider potentials that for each fixed time belong to L3/2L^{3/2} in space. The exponent 3/2 is critical for the singularities of the potential in space. For this singular class of potentials the result is new even in the time--independent case, where it was only known for bounded exponentially decreasing potentials.Comment: In this revised version I give a more detailed motivation of the class of potentials that I consider and I have corrected some typo

    Design and performance of personal cooling garments based on three-layer laminates

    Get PDF
    Personal cooling systems are mainly based on cold air or liquids circulating through a tubing system. They are weighty, bulky and depend on an external power source. In contrast, the laminate-based technology presented here offers new flexible and light weight cooling garments integrated into textiles. It is based on a three-layer composite assembled from two waterproof, but water vapor permeable membranes and a hydrophilic fabric in between. Water absorbed in the fabric will be evaporated by the body temperature resulting in cooling energy. The laminate's high adaptiveness makes it possible to produce cooling garments even for difficult anatomic topologies. The determined cooling energy of the laminate depends mainly on the environmental conditions (temperature, relative humidity, wind): heat flux at standard climatic conditions (20°C, 65% R.H., wind 5km/h) has measured 423.2±52.6W/m2, water vapor transmission resistance, R et, 10.83±0.38m2Pa/W and thermal resistance, R ct, 0.010±0.002m2K/W. Thermal conductivity, k, changed from 0.048±0.003 (dry) to 0.244±0.018W/mK (water added). The maximum fall in skin temperature, ∆T max, under the laminate was 5.7±1.2°C, taken from a 12 subject study with a thigh cooling garment during treadmill walking (23°C, 50% R.H., no wind) and a significant linear correlation (R=0.85, P=0.01) between body mass index and time to reach 67% of ∆T max could be determine

    Mechanically adaptive nanocomposites for neural interfacing

    Get PDF
    The recording of neural signals with microelectrodes that are implanted into the cortex of the brain is potentially useful for a range of clinical applications. However, the widespread use of such neural interfaces has so far been stifled because existing intracortical electrode systems rarely allow for consistent long-term recording of neural activity. This limitation is usually attributed to scar formation and neuron death near the surface of the implanted electrode. It has been proposed that the mechanical property mismatch between existing electrode materials and the brain tissue is a significant contributor to these events. To alleviate this problem, we utilized the architecture of the sea cucumber dermis as a blueprint to engineer a new class of mechanically adaptive materials as substrates for "smart” intracortical electrodes. We demonstrated that these originally rigid polymer nanocomposites soften considerably upon exposure to emulated physiological and in vivo conditions. The adaptive nature of these bioinspired materials makes them useful as a basis for electrodes that are sufficiently stiff to be easily implanted and subsequently soften to better match the stiffness of the brain. Initial histological evaluations suggest that mechanically adaptive neural prosthetics can more rapidly stabilize neural cell populations at the device interface than rigid systems, which bodes well for improving the functionality of intracortical device

    Neural networks engaged in tactile object manipulation: patterns of expression among healthy individuals

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Somatosensory object discrimination has been shown to involve widespread cortical and subcortical structures in both cerebral hemispheres. In this study we aimed to identify the networks involved in tactile object manipulation by principal component analysis (PCA) of individual subjects. We expected to find more than one network.</p> <p>Methods</p> <p>Seven healthy right-handed male volunteers (aged 22 to 44 yrs) manipulated with their right hand aluminium spheres during 5 s with a repetition frequency of 0.5-0.7 Hz. The correlation coefficients between the principal component temporal expression coefficients and the hemodynamic response modelled by SPM (ecc) determined the task-related components. To establish reproducibility within subjects and similarity of functional connectivity patterns among subjects, regional correlation coefficients (rcc) were computed between task-related component image volumes. By hierarchically categorizing, selecting and averaging the task-related component image volumes across subjects according to the rccs, mean component images (MCIs) were derived describing neural networks associated with tactile object manipulation.</p> <p>Results</p> <p>Two independent mean component images emerged. Each included the primary sensorimotor cortex contralateral to the manipulating hand. The region extended to the premotor cortex in MCI 1, whereas it was restricted to the hand area of the primary sensorimotor cortex in MCI 2. MCI 1 showed bilateral involvement of the paralimbic anterior cingulate cortex (ACC), whereas MCI 2 implicated the midline thalamic nuclei and two areas of the rostral dorsal pons.</p> <p>Conclusions</p> <p>Two distinct networks participate in tactile object manipulation as revealed by the intra- and interindividual comparison of individual scans. Both were employed by most subjects, suggesting that both are involved in normal somatosensory object discrimination.</p
    corecore