11,039 research outputs found
Magnetic compressibility and ion-temperature-gradient-driven microinstabilities in magnetically confined plasmas
The electromagnetic theory of the strongly driven ion-temperature-gradient
(ITG) instability in magnetically confined toroidal plasmas is developed.
Stabilizing and destabilizing effects are identified, and a critical
(the ratio of the electron to magnetic pressure) for stabilization
of the toroidal branch of the mode is calculated for magnetic equilibria
independent of the coordinate along the magnetic field. Its scaling is
where is the characteristic electron
temperature gradient length, and the major radius of the torus. We
conjecture that a fast particle population can cause a similar stabilization
due to its contribution to the equilibrium pressure gradient. For sheared
equilibria, the boundary of marginal stability of the electromagnetic
correction to the electrostatic mode is also given. For a general magnetic
equilibrium, we find a critical length (for electromagnetic stabilization) of
the extent of the unfavourable curvature along the magnetic field. This is a
decreasing function of the local magnetic shear
High-m Kink/Tearing Modes in Cylindrical Geometry
The global ideal kink equation, for cylindrical geometry and zero beta, is
simplified in the high poloidal mode number limit and used to determine the
tearing stability parameter, . In the presence of a steep
monotonic current gradient, becomes a function of a parameter,
, characterising the ratio of the maximum current gradient to
magnetic shear, and , characterising the separation of the resonant
surface from the maximum of the current gradient. In equilibria containing a
current "spike", so that there is a non-monotonic current profile,
also depends on two parameters: , related to the ratio
of the curvature of the current density at its maximum to the magnetic shear,
and , which now represents the separation of the resonance from the point
of maximum current density. The relation of our results to earlier studies of
tearing modes and to recent gyro-kinetic calculations of current driven
instabilities, is discussed, together with potential implications for the
stability of the tokamak pedestal.Comment: To appear in Plasma Physics and Controlled Fusio
- …