145 research outputs found
Spectrally narrow exciton luminescence from monolayer MoS2 exfoliated onto epitaxially grown hexagonal BN
The strong light-matter interaction in transition Metal dichalcogenides
(TMDs) monolayers (MLs) is governed by robust excitons. Important progress has
been made to control the dielectric environment surrounding the MLs, especially
through hexagonal boron nitride (hBN) encapsulation, which drastically reduces
the inhomogeneous contribution to the exciton linewidth. Most studies use
exfoliated hBN from high quality flakes grown under high pressure. In this
work, we show that hBN grown by molecular beam epitaxy (MBE) over a large
surface area substrate has a similarly positive impact on the optical emission
from TMD MLs. We deposit MoS and MoSe MLs on ultrathin hBN films (few
MLs thick) grown on Ni/MgO(111) by MBE. Then we cover them with exfoliated hBN
to finally obtain an encapsulated sample : exfoliated hBN/TMD ML/MBE hBN. We
observe an improved optical quality of our samples compared to TMD MLs
exfoliated directly on SiO substrates. Our results suggest that hBN grown
by MBE could be used as a flat and charge free substrate for fabricating
TMD-based heterostructures on a larger scale.Comment: 5 pages, 3 figure
Polarization Control of the Non-linear Emission on Semiconductor Microcavities
The degree of circular polarization () of the non-linear emission in
semiconductor microcavities is controlled by changing the exciton-cavity
detuning. The polariton relaxation towards \textbf{K} cavity-like
states is governed by final-state stimulated scattering. The helicity of the
emission is selected due to the lifting of the degeneracy of the spin
levels at \textbf{K} . At short times after a pulsed excitation
reaches very large values, either positive or negative, as a result of
stimulated scattering to the spin level of lowest energy ( spin for
positive/negative detuning).Comment: 8 pages, 3 eps figures, RevTeX, Physical Review Letters (accepted
Variation in the level of aggression, chemical and genetic distance among three supercolonies of the Argentine ant in Europe.
In their invasive ranges, Argentine ant populations often form one geographically vast supercolony, genetically and chemically uniform within which there is no intraspecific aggression. Here we present regional patterns of intraspecific aggression, cuticular hydrocarbons (CHCs) and population genetics of 18 nesting sites across Corsica and the French mainland. Aggression tests confirm the presence of a third European supercolony, the Corsican supercolony, which exhibits moderate to high levels of aggression, depending on nesting sites, with the Main supercolony, and invariably high levels of aggression with the Catalonian supercolony. The chemical analyses corroborated the behavioural data, with workers of the Corsican supercolony showing moderate differences in CHCs compared to workers of the European Main supercolony and strong differences compared to workers of the Catalonian supercolony. Interestingly, there were also clear genetic differences between workers of the Catalonian supercolony and the two other supercolonies at both nuclear and mitochondrial markers, but only very weak genetic differentiation between nesting sites of the Corsican and Main supercolonies (F(ST) = 0.06). A detailed comparison of the genetic composition of supercolonies also revealed that, if one of the last two supercolonies derived from the other, it is the Main supercolony that derived from the Corsican supercolony rather than the reverse. Overall, these findings highlight the importance of conducting more qualitative and quantitative analyses of the level of aggression between supercolonies, which has to be correlated with genetic and chemical data
The Role of Interdiffusion and Spatial Confinement in the Formation of Resonant Raman Spectra of Ge/Si(100) Heterostructures with Quantum-Dot Arrays
The phonon modes of self-assembled Ge/Si quantum dots grown by molecular-beam
epitaxy in an apparatus integrated with a chamber of the scanning tunneling
microscope into a single high-vacuum system are investigated using Raman
spectroscopy. It is revealed that the Ge-Ge and Si-Ge vibrational modes are
considerably enhanced upon excitation of excitons between the valence band
and the conduction band (the E1 and E1 +
transitions). This makes it possible to observe the Raman spectrum of very
small amounts of germanium, such as one layer of quantum dots with a germanium
layer thickness of 10 \r{A}. The enhancement of these modes suggests a strong
electron-phonon interaction of the vibrational modes with the E1 and E1 +
excitons in the quantum dot. It is demonstrated that the frequency
of the Ge-Ge mode decreases by 10 cm^-1 with a decrease in the thickness of the
Ge layer from 10 to 6 \r{A} due to the spatial-confinement effect. The optimum
thickness of the Ge layer, for which the size dispersion of quantum dots is
minimum, is determined.Comment: 14 pages, 9 figure
Electrical spin injection into p-doped quantum dots through a tunnel barrier
We have demonstrated by electroluminescence the injection of spin polarized
electrons through Co/Al2O3/GaAs tunnel barrier into p-doped InAs/GaAs quantum
dots embedded in a PIN GaAs light emitting diode. The spin relaxation processes
in the p-doped quantum dots are characterized independently by optical
measurements (time and polarization resolved photoluminescence). The measured
electroluminescence circular polarization is about 15 % at low temperature in a
2T magnetic field, leading to an estimation of the electrical spin injection
yield of 35%. Moreover, this electroluminescence circular polarization is
stable up to 70 K.Comment: 6 pages, 4 figure
Exciton Spin Dynamics in Semiconductor Quantum Wells
In this paper we will review Exciton Spin Dynamics in Semiconductor Quantum
Wells. The spin properties of excitons in nanostructures are determined by
their fine structure. We will mainly focus in this review on GaAs and InGaAs
quantum wells which are model systems.Comment: 55 pages, 27 figure
Large and robust electrical spin injection into GaAs at zero magnetic field using an ultrathin CoFeB/MgO injector
We demonstrate a large electrical spin injection into GaAs at zero magnetic
field thanks to an ultrathin perpendicularly magnetized CoFeB contact of a few
atomic planes (1.2 nm). The spin-polarization of electrons injected into GaAs
was examined by the circular polarization of electroluminescence from a Spin
Light Emitting Diode with embedded InGaAs/GaAs quantum wells. The
electroluminescence polarization as a function of the magnetic field closely
traces the out-of-plane magnetization of the CoFeB/MgO injector. A circular
polarization degree of the emitted light as large as 20% at 25 K is achieved at
zero magnetic field. Moreover the electroluminescence circular polarization is
still about 8% at room temperature.Comment: *Corresponding author: [email protected]
Intervalley scattering by acoustic phonons in two-dimensional MoS2 revealed by double-resonance Raman spectroscopy
Double-resonance Raman scattering is a sensitive probe to study the electron-phonon scattering pathways in crystals. For semiconducting two-dimensional transition-metal dichalcogenides, the double-resonance Raman process involves different valleys and phonons in the Brillouin zone, and it has not yet been fully understood. Here we present a multiple energy excitation Raman study in conjunction with density functional theory calculations that unveil the double-resonance Raman scattering process in monolayer and bulk MoS2. Results show that the frequency of some Raman features shifts when changing the excitation energy, and first-principle simulations confirm that such bands arise from distinct acoustic phonons, connecting different valley states. The double-resonance Raman process is affected by the indirect-to-direct bandgap transition, and a comparison of results in monolayer and bulk allows the assignment of each Raman feature near the M or K points of the Brillouin zone. Our work highlights the underlying physics of intervalley scattering of electrons by acoustic phonons, which is essential for valley depolarization in MoS2
- âŠ