6 research outputs found
The Heidelberg Drilling Project (Upper Rhine Graben, Germany)
The Heidelberg basin hosts one of the thickest successions of unconsolidated Pliocene and Quaternary deposits in continental middle Europe, and certainly the thickest succession built by the Geosystem Rhine, connecting Alps, Rhine Graben, North Sea and English Channel. Also local Geosystems, first place the Neckar System, contribute to the basin infill. The more or less continuous subsidence of the Upper Rhine Graben (URG) during all periods of tertiary Graben history, but especially during the last few million years, led to a succession of alternating fluvial and lacustrine environments of various provenances. This archive contains not only various proxies of the mid-European climate evolution during the Plio-Quaternary, but also signals of geodynamic processes controlled by tectonics. Various pre project activities during the last years prove the feasibility of an extensive research project to begin in late 2005. In its centre will be three drillings envisaged to become 300 m, 350 m and 500 m deep which are all designed to expose the Plio-Quaternary transition. The various techniques of facies analysis, geophysical exploration, geochronology, climate and tectonics modelling, to be combined in a comprehensive 3D evolutionary scenario, will – hopefully – enable us to read and understand the archive of the Heidelberg basin fill. The expected results will not only contribute to the data pools of palaeoclimate and neotectonics, but are also a methodological test in handling complex Geosystems. A considerable fallout with regard to societal use and handling of the geo-environment is also expected: from use of geothermal energy, hydrogeology and pollution handling in a highly industrialized region, right to assessment of climate and seismic risks.The project will be run by a Co-operation of the Leibniz Institute for Applied Geosciences (Hannover) and the Geological Services of the three German federal States sharing the territories of the Heidelberg basin (Baden-Württemberg, Hessen, Rheinland-Pfalz). This paper is designed to outline the project, present some very preliminary results of pre-project research and stimulate further collaboration into the main project to come.Le bassin d’Heidelberg présente une des successions de dépôts quaternaires non consolidés les plus épaisses d’Europe continentale moyenne et certainement la succession la plus épaisse du géosystème Rhin, connectant les Alpes, le graben du Rhin, la Mer du Nord et la Manche. Des géosystèmes locaux, avec en premier lieu celui du Neckar, contribuent également au remplissage du bassin. La subsidence plus ou moins continue de cette partie du graben du Rhin durant toute son histoire cénozoïque, mais en particulier durant les derniers millions d’années, a conduit à la mise en place d’une succession d’environnements fluviaux et lacustres de différentes provenances. Cette archive ne contient pas seulement différents proxies de l’évolution climatique durant le Plio-Quaternaire, mais également des signaux des processus géodynamiques controlés par le climat et la tectonique.Différentes activités pré-projet menées durant ces dernières années ont montré la faisabilité d’un programme de recherche important qui a pris corps autour d’un projet de carottage profond prévue pour commencer à la fin 2005. Les différentes techniques d’analyse de faciès, d’exploration géophysique, de géochronologie, de modélisation du climat et de la tectonique, prévues pour être intégrées dans un modèle compréhensif d’évolution 3D, permettront de lire et de comprendre l’archive d’Heidelberg. Les résultats escomptés ne contribueront pas seulement à documenter les aspects paléoclimatiques et néotectoniques, mais fourniront également un apport méthodologique pour l´appréhension des géosystèmes complexes. Des retombées importantes sont également attendues par rapport aux usages sociaux et à la gestion des géo-environnements, en ce qui concerne l’énergie géothermique, l’hydrogéologie et la maîtrise des pollutions dans une région très industrialisée, sensible aux modifications climatiques et au risque sismique.Le projet sera mis en œuvre grâce à une coopération de l’Institut GGA pour les Géosciences appliquées de Hanovre et les services géologiques des trois Länder recouvrant le bassin d’Heidelberg (Baden-Württemberg, Hesse, Rhénanie-Palatinat). Cet article expose le projet, présente quelques résultats préliminaires ou recherches pré-projets et propose des opportunités de collaboration
Q4 Continuité et discontinuité dans les enregistrements quaternaires - Première partie
Organisé par l’AFEQ et le CNF-INQUA dans le cadre de la Réunion des Sciences de la Terre (RST) (Strasbourg 22 - 23 Septembre 2004
A Quantitative Comparison of Human HT-1080 Fibrosarcoma Cells and Primary Human Dermal Fibroblasts Identifies a 3D Migration Mechanism with Properties Unique to the Transformed Phenotype
<div><p>Here, we describe an engineering approach to quantitatively compare migration, morphologies, and adhesion for tumorigenic human fibrosarcoma cells (HT-1080s) and primary human dermal fibroblasts (hDFs) with the aim of identifying distinguishing properties of the transformed phenotype. Relative adhesiveness was quantified using self-assembled monolayer (SAM) arrays and proteolytic 3-dimensional (3D) migration was investigated using matrix metalloproteinase (MMP)-degradable poly(ethylene glycol) (PEG) hydrogels (“synthetic extracellular matrix” or “synthetic ECM”). In synthetic ECM, hDFs were characterized by vinculin-containing features on the tips of protrusions, multipolar morphologies, and organized actomyosin filaments. In contrast, HT-1080s were characterized by diffuse vinculin expression, pronounced β1-integrin on the tips of protrusions, a cortically-organized F-actin cytoskeleton, and quantitatively more rounded morphologies, decreased adhesiveness, and increased directional motility compared to hDFs. Further, HT-1080s were characterized by contractility-dependent motility, pronounced blebbing, and cortical contraction waves or constriction rings, while quantified 3D motility was similar in matrices with a wide range of biochemical and biophysical properties (including collagen) despite substantial morphological changes. While HT-1080s were distinct from hDFs for each of the 2D and 3D properties investigated, several features were similar to WM239a melanoma cells, including rounded, proteolytic migration modes, cortical F-actin organization, and prominent uropod-like structures enriched with β1-integrin, F-actin, and melanoma cell adhesion molecule (MCAM/CD146/MUC18). Importantly, many of the features observed for HT-1080s were analogous to cellular changes induced by transformation, including cell rounding, a disorganized F-actin cytoskeleton, altered organization of focal adhesion proteins, and a weakly adherent phenotype. Based on our results, we propose that HT-1080s migrate in synthetic ECM with functional properties that are a direct consequence of their transformed phenotype. </p> </div