143 research outputs found

    Time-resolved XUV Opacity Measurements of Warm-Dense Aluminium

    Full text link
    The free-free opacity in plasmas is fundamental to our understanding of energy transport in stellar interiors and for inertial confinement fusion research. However, theoretical predictions in the challenging dense plasma regime are conflicting and there is a dearth of accurate experimental data to allow for direct model validation. Here we present time-resolved transmission measurements in solid-density Al heated by an XUV free-electron laser. We use a novel functional optimization approach to extract the temperature-dependent absorption coefficient directly from an oversampled pool of single-shot measurements, and find a pronounced enhancement of the opacity as the plasma is heated to temperatures of order the Fermi energy. Plasma heating and opacity-enhancement is observed on ultrafast time scales, within the duration of the femtosecond XUV pulse. We attribute further rises in the opacity on ps timescales to melt and the formation of warm-dense matter

    Spallative ablation of dielectrics by X-ray laser

    Full text link
    Short laser pulse in wide range of wavelengths, from infrared to X-ray, disturbs electron-ion equilibrium and rises pressure in a heated layer. The case where pulse duration Ď„L\tau_L is shorter than acoustic relaxation time tst_s is considered in the paper. It is shown that this short pulse may cause thermomechanical phenomena such as spallative ablation regardless to wavelength. While the physics of electron-ion relaxation on wavelength and various electron spectra of substances: there are spectra with an energy gap in semiconductors and dielectrics opposed to gapless continuous spectra in metals. The paper describes entire sequence of thermomechanical processes from expansion, nucleation, foaming, and nanostructuring to spallation with particular attention to spallation by X-ray pulse

    Characterization of megahertz X ray laser beams by multishot desorption imprints in PMMA

    Get PDF
    Proper diagnostics of intense free electron laser FEL X ray pulses is indisputably important for experimental data analysis as well as for the protection of beamline optical elements. New challenges for beam diagnostic methods are introduced by modern FEL facilities capable of delivering powerful pulses at megahertz MHz repetition rates. In this paper, we report the first characterization of a defocused MHz 13.5 nm beam generated by the free electron laser in Hamburg FLASH using the method of multi pulse desorption imprints in poly methyl methacrylate PMMA . The beam fluence profile is reconstructed in a novel and highly accurate way that takes into account the nonlinear response of material removal to total dose delivered by multiple pulses. The algorithm is applied to experimental data of single shot ablation imprints and multi shot desorption imprints at both low 10 Hz and high 1 MHz repetition rates. Reconstructed response functions show a great agreement with the theoretical desorption response function mode

    Mechanism of single shot damage of Ru thin films irradiated by femtosecond extreme UV free electron laser

    Get PDF
    Ruthenium is a perspective material to be used for XUV mirrors at free electron laser facilities. Yet, it is still poorly studied in the context of ultrafast laser matter interaction. In this work, we present single shot damage studies of thin Ru films irradiated by femtosecond XUV free electron laser pulses at FLASH. Ex situ analysis of the damaged spots, performed by different types of microscopy, shows that the weakest detected damage is surface roughening. For higher fluences we observe ablation of Ru. Combined simulations using Monte Carlo code XCASCADE 3D and the two temperature model reveal that the damage mechanism is photomechanical spallation, similar to the case of irradiating the target with optical lasers. The analogy with the optical damage studies enables us to explain the observed damage morphologie

    Experimental study of EUV mirror radiation damage resistance under long term free electron laser exposures below the single shot damage threshold

    Get PDF
    The durability of grazing and normal incidence optical coatings has been experimentally assessed under free electron laser irradiation at various numbers of pulses up to 16 million shots and various fluence levels below 10 of the single shot damage threshold. The experiment was performed at FLASH, the Free electron LASer in Hamburg, using 13.5 nm extreme UV EUV radiation with 100 fs pulse duration. Polycrystalline ruthenium and amorphous carbon 50 nm thin films on silicon substrates were tested at total external reflection angles of 20 and 10 grazing incidence, respectively. Mo Si periodical multilayer structures were tested in the Bragg reflection condition at 16 off normal angle of incidence. The exposed areas were analysed post mortem using differential contrast visible light microscopy, EUV reflectivity mapping and scanning X ray photoelectron spectroscopy. The analysis revealed that Ru and Mo Si coatings exposed to the highest dose and fluence level show a few per cent drop in their EUV reflectivity, which is explained by EUV induced oxidation of the surfac

    The soft x-ray instrument for materials studies at the linac coherent light source x-ray free-electron laser

    Get PDF
    This content may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This material originally appeared in Review of Scientific Instruments 83, 043107 (2012) and may be found at https://doi.org/10.1063/1.3698294.The soft x-ray materials science instrument is the second operational beamline at the linac coherent light source x-ray free electron laser. The instrument operates with a photon energy range of 480–2000 eV and features a grating monochromator as well as bendable refocusing mirrors. A broad range of experimental stations may be installed to study diverse scientific topics such as: ultrafast chemistry, surface science, highly correlated electron systems, matter under extreme conditions, and laboratory astrophysics. Preliminary commissioning results are presented including the first soft x-ray single-shot energy spectrum from a free electron laser

    Therapeutic Potential of HDL in Cardioprotection and Tissue Repair

    Get PDF
    Epidemiological studies support a strong association between high-density lipoprotein (HDL) cholesterol levels and heart failure incidence. Experimental evidence from different angles supports the view that low HDL is unlikely an innocent bystander in the development of heart failure. HDL exerts direct cardioprotective effects, which are mediated via its interactions with the myocardium and more specifically with cardiomyocytes. HDL may improve cardiac function in several ways. Firstly, HDL may protect the heart against ischaemia/reperfusion injury resulting in a reduction of infarct size and thus in myocardial salvage. Secondly, HDL can improve cardiac function in the absence of ischaemic heart disease as illustrated by beneficial effects conferred by these lipoproteins in diabetic cardiomyopathy. Thirdly, HDL may improve cardiac function by reducing infarct expansion and by attenuating ventricular remodelling post-myocardial infarction. These different mechanisms are substantiated by in vitro, ex vivo, and in vivo intervention studies that applied treatment with native HDL, treatment with reconstituted HDL, or human apo A-I gene transfer. The effect of human apo A-I gene transfer on infarct expansion and ventricular remodelling post-myocardial infarction illustrates the beneficial effects of HDL on tissue repair. The role of HDL in tissue repair is further underpinned by the potent effects of these lipoproteins on endothelial progenitor cell number, function, and incorporation, which may in particular be relevant under conditions of high endothelial cell turnover. Furthermore, topical HDL therapy enhances cutaneous wound healing in different models. In conclusion, the development of HDL-targeted interventions in these strategically chosen therapeutic areas is supported by a strong clinical rationale and significant preclinical data.status: publishe

    SheddomeDB: the ectodomain shedding database for membrane-bound shed markers

    Full text link
    • …
    corecore