150 research outputs found

    The M18 aspartyl aminopeptidase of Plasmodium falciparum binds to human erythrocyte spectrin in vitro

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>During erythrocytic schizogony, <it>Plasmodium falciparum </it>interacts with the human erythrocyte membrane when it enters into, grows within and escapes from the erythrocyte. An interaction between the <it>P. falciparum </it>M18 aspartyl aminopeptidase (<it>Pf</it>M18AAP) and the human erythrocyte membrane protein spectrin was recently identified using phage display technology. In this study, recombinant (r) <it>Pf</it>M18AAP was characterized and the interaction between the enzyme and spectrin, as well as other erythrocyte membrane proteins, analyzed.</p> <p>Methods</p> <p>r<it>Pf</it>M18AAP was produced as a hexahistidine-fusion protein in <it>Escherichia coli </it>and purified using magnetic bead technology. The pI of the enzyme was determined by two-dimensional gel electrophoresis and the number of subunits in the native enzyme was estimated from Ferguson plots. The enzymatic activity over a pH and temperature range was tested by a coupled enzyme assay. Blot overlays were performed to validate the spectrin-<it>Pf</it>M18AAP interaction, as well as identify additional interactions between the enzyme and other erythrocyte membrane proteins. Sequence analysis identified conserved amino acids that are expected to be involved in cofactor binding, substrate cleavage and quaternary structure stabilization.</p> <p>Results</p> <p>r<it>Pf</it>M18AAP has a molecular weight of ~67 kDa and the enzyme separated as three entities with pI 6.6, 6.7 and 6.9. Non-denaturing gel electrophoresis indicated that r<it>Pf</it>M18AAP aggregated into oligomers. An <it>in vitro </it>coupled enzyme assay showed that r<it>Pf</it>M18AAP cleaved an N-terminal aspartate from a tripeptide substrate with maximum enzymatic activity at pH 7.5 and 37°C. The spectrin-binding region of <it>Pf</it>M18AAP is not found in <it>Homo sapiens, Saccharomyces cerevisiae </it>and other<it>Plasmodium </it>species homologues. Amino acids expected to be involved in cofactor binding, substrate cleavage and quaternary structure stabilization, are conserved. Blot overlays with r<it>Pf</it>M18AAP against spectrin and erythrocyte membrane proteins indicated that r<it>Pf</it>M18AAP binds to spectrin, as well as to protein 4.1, protein 4.2, actin and glyceraldehyde 3-phosphate dehydrogenase.</p> <p>Conclusion</p> <p>Studies characterizing r<it>Pf</it>M18AAP showed that this enzyme interacts with erythrocyte spectrin and other membrane proteins. This suggests that, in addition to its proposed role in hemoglobin digestion, <it>Pf</it>M18AAP performs other functions in the erythrocyte host and can utilize several substrates, which highlights the multifunctional role of malaria enzymes.</p

    Parasite co-infections and their impact on survival of indigenous cattle

    Get PDF
    In natural populations, individuals may be infected with multiple distinct pathogens at a time. These pathogens may act independently or interact with each other and the host through various mechanisms, with resultant varying outcomes on host health and survival. To study effects of pathogens and their interactions on host survival, we followed 548 zebu cattle during their first year of life, determining their infection and clinical status every 5 weeks. Using a combination of clinical signs observed before death, laboratory diagnostic test results, gross-lesions on post-mortem examination, histo-pathology results and survival analysis statistical techniques, cause-specific aetiology for each death case were determined, and effect of co-infections in observed mortality patterns. East Coast fever (ECF) caused by protozoan parasite Theileria parva and haemonchosis were the most important diseases associated with calf mortality, together accounting for over half (52%) of all deaths due to infectious diseases. Co-infection with Trypanosoma species increased the hazard for ECF death by 6 times (1.4-25; 95% CI). In addition, the hazard for ECF death was increased in the presence of Strongyle eggs, and this was burden dependent. An increase by 1000 Strongyle eggs per gram of faeces count was associated with a 1.5 times (1.4-1.6; 95% CI) increase in the hazard for ECF mortality. Deaths due to haemonchosis were burden dependent, with a 70% increase in hazard for death for every increase in strongyle eggs per gram count of 1000. These findings have important implications for disease control strategies, suggesting a need to consider co-infections in epidemiological studies as opposed to single-pathogen focus, and benefits of an integrated approach to helminths and East Coast fever disease control

    Hematological profile of East African Short-Horn Zebu calves: From birth to 51 weeks of age

    Get PDF
    This paper is the first attempt to accurately describe the hematological parameters for any African breed of cattle, by capturing the changes in these parameters over the first 12 months of an animal’s life using a population based sample of calves reared under field conditions and natural disease challenge. Using a longitudinal study design, a stratified clustered random sample of newborn calves was recruited into the Infectious Diseases of East African Livestock (IDEAL) study and monitored at 5-weekly intervals until 51 weeks of age. The blood cell analysis performed at each visit included: packed cell volume; red cell count; red cell distribution width; mean corpuscular volume; mean corpuscular hemoglobin concentration; hemoglobin concentration; white cell count; absolute lymphocyte, eosinophil, monocyte, and neutrophil counts; platelet count; mean platelet volume; and total serum protein. The most significant age-related change in the red cell parameters was a rise in red cell count and hemoglobin concentration during the neonatal period. This is in contrast to what is reported for other ruminants, including European cattle breeds where the neonatal period is marked by a fall in the red cell parameters. There is a need to establish breed specific reference ranges for blood parameters for indigenous cattle breeds. The possible role of the postnatal rise in the red cell parameters in the adaptability to environmental constraints and innate disease resistance warrants further research into the dynamics of blood cell parameters of these breed

    A longitudinal assessment of the serological response to Theileria parva and other tick-borne parasites from birth to one year in a cohort of indigenous calves in western Kenya

    Get PDF
    Tick-borne diseases are a major impediment to improved productivity of livestock in sub-Saharan Africa. Improved control of these diseases would be assisted by detailed epidemiological data. Here we used longitudinal, serological data to determine the patterns of exposure to Theileria parva, Theileria mutans, Babesia bigemina and Anaplasma marginale from 548 indigenous calves in western Kenya. The percentage of calves seropositive for the first three parasites declined from initial high levels due to maternal antibody until week 16, after which the percentage increased until the end of the study. In contrast, the percentage of calves seropositive for T. mutans increased from week 6 and reached a maximal level at week 16. Overall 423 (77%) calves seroconverted to T. parva, 451 (82%) toT. mutans, 195 (36%) to B. bigemina and 275 (50%) to A. marginale. Theileria parva antibody levels were sustained following infection, in contrast to those of the other three haemoparasites. Three times as many calves seroconverted to T. mutans before seroconverting to T. parva. No T. parva antibody response was detected in 25 calves that died of T. parva infection, suggesting that most deaths due to T. parva are the result of acute disease from primary exposure

    Variation and covariation in strongyle infection in East African shorthorn zebu calves.

    Get PDF
    Parasite burden varies widely between individuals within a population, and can covary with multiple aspects of individual phenotype. Here we investigate the sources of variation in faecal strongyle eggs counts, and its association with body weight and a suite of haematological measures, in a cohort of indigenous zebu calves in Western Kenya, using relatedness matrices reconstructed from single nucleotide polymorphism (SNP) genotypes. Strongyle egg count was heritable (h2 = 23·9%, s.e. = 11·8%) and we also found heritability of white blood cell counts (WBC) (h2 = 27·6%, s.e. = 10·6%). All the traits investigated showed negative phenotypic covariances with strongyle egg count throughout the first year: high worm counts were associated with low values of WBC, red blood cell count, total serum protein and absolute eosinophil count. Furthermore, calf body weight at 1 week old was a significant predictor of strongyle EPG at 16–51 weeks, with smaller calves having a higher strongyle egg count later in life. Our results indicate a genetic basis to strongyle EPG in this population, and also reveal consistently strong negative associations between strongyle infection and other important aspects of the multivariate phenotype

    Design and descriptive epidemiology of the Infectious Diseases of East African Livestock (IDEAL) project, a longitudinal calf cohort study in western Kenya

    Get PDF
    BACKGROUND: There is a widely recognised lack of baseline epidemiological data on the dynamics and impacts of infectious cattle diseases in east Africa. The Infectious Diseases of East African Livestock (IDEAL) project is an epidemiological study of cattle health in western Kenya with the aim of providing baseline epidemiological data, investigating the impact of different infections on key responses such as growth, mortality and morbidity, the additive and/or multiplicative effects of co-infections, and the influence of management and genetic factors. A longitudinal cohort study of newborn calves was conducted in western Kenya between 2007-2009. Calves were randomly selected from all those reported in a 2 stage clustered sampling strategy. Calves were recruited between 3 and 7 days old. A team of veterinarians and animal health assistants carried out 5-weekly, clinical and postmortem visits. Blood and tissue samples were collected in association with all visits and screened using a range of laboratory based diagnostic methods for over 100 different pathogens or infectious exposures. RESULTS: The study followed the 548 calves over the first 51 weeks of life or until death and when they were reported clinically ill. The cohort experienced a high all cause mortality rate of 16% with at least 13% of these due to infectious diseases. Only 307 (6%) of routine visits were classified as clinical episodes, with a further 216 reported by farmers. 54% of calves reached one year without a reported clinical episode. Mortality was mainly to east coast fever, haemonchosis, and heartwater. Over 50 pathogens were detected in this population with exposure to a further 6 viruses and bacteria. CONCLUSION: The IDEAL study has demonstrated that it is possible to mount population based longitudinal animal studies. The results quantify for the first time in an animal population the high diversity of pathogens a population may have to deal with and the levels of co-infections with key pathogens such as Theileria parva. This study highlights the need to develop new systems based approaches to study pathogens in their natural settings to understand the impacts of co-infections on clinical outcomes and to develop new evidence based interventions that are relevant

    What does the structure-function relationship of the HIV-1 Tat protein teach us about developing an AIDS vaccine?

    Get PDF
    The human immunodeficiency virus type 1 (HIV-1) trans-activator of transcription protein Tat is an important factor in viral pathogenesis. In addition to its function as the key trans-activator of viral transcription, Tat is also secreted by the infected cell and taken up by neighboring cells where it has an effect both on infected and uninfected cells. In this review we will focus on the relationship between the structure of the Tat protein and its function as a secreted factor. To this end we will summarize some of the exogenous functions of Tat that have been implicated in HIV-1 pathogenesis and the impact of structural variations and viral subtype variants of Tat on those functions. Finally, since in some patients the presence of Tat-specific antibodies or CTL frequencies are associated with slow or non-progression to AIDS, we will also discuss the role of Tat as a potential vaccine candidate, the advances made in this field, and the importance of using a Tat protein capable of eliciting a protective or therapeutic immune response to viral challenge
    corecore