377 research outputs found
Triaxiality and shape coexistence in Germanium isotopes
The ground-state deformations of the Ge isotopes are investigated in the
framework of Gogny-Hartree-Fock-Bogoliubov (HFB) and Skyrme Hartree-Fock plus
pairing in the BCS approximation. Five different Skyrme parametrizations are
used to explore the influence of different effective masses and spin-orbit
models. There is generally good agreement for binding energies and deformations
(total quadrupole moment, triaxiality) with experimental data where available
(i.e., in the valley of stability). All calculations agree in predicting a
strong tendency for triaxial shapes in the Ge isotopes with only a few
exceptions due to neutron (sub-)shell closures. The frequent occurrence of
energetically very close shape isomers indicates that the underlying
deformation energy landscape is very soft. The general triaxial softness of the
Ge isotopes is demonstrated in the fully triaxial potential energy surface. The
differences between the forces play an increasing role with increasing neutron
number. This concerns particularly the influence of the spin-orbit model, which
has a visible effect on the trend of binding energies towards the drip line.
Different effective mass plays an important role in predicting the quadrupole
and triaxial deformations. The pairing strength only weakly affects binding
energies and total quadrupole deformations, but considerably influences
triaxiality.Comment: 9 page
Criteria for nonlinear parameters of relativistic mean field models
Based on the properties of the critical and the actual effective masses of
sigma and omega mesons, criteria to estimate the values of the isoscalar
nonlinear terms of the standard relativistic mean field model that reproduce
stable equations of state in respect to particle hole excitation at high
densities are derived. The relation between nuclear matter stability and the
symmetric nuclear matter properties are shown. The criteria are used to analyze
in a more systematic way the high-density longitudinal and transverse
instabilities of some parameter sets of relativistic mean field models. The
critical role of the vector and vector-scalar nonlinear terms is also discussed
quantitatively.Comment: 21 pages, 10 figures, 4 tables. Accepted for Publication in Physical
review
Neural Networks for Impact Parameter Determination
An accurate impact parameter determination in a heavy ion collision is
crucial for almost all further analysis. The capabilities of an artificial
neural network are investigated to that respect. A novel input generation for
the network is proposed, namely the transverse and longitudinal momentum
distribution of all outgoing (or actually detectable) particles. The neural
network approach yields an improvement in performance of a factor of two as
compared to classical techniques. To achieve this improvement simple network
architectures and a 5 by 5 input grid in (p_t,p_z) space are sufficient.Comment: Phys. Rev. C in print. Postscript-file also available at
http://www.th.physik.uni-frankfurt.de/~bass/pub.htm
Consequences of the center-of-mass correction in nuclear mean-field models
We study the influence of the scheme for the correction for spurious
center-of-mass motion on the fit of effective interactions for self-consistent
nuclear mean-field calculations. We find that interactions with very simple
center-of-mass correction have significantly larger surface coefficients than
interactions for which the center-of-mass correction was calculated for the
actual many-body state during the fit. The reason for that is that the
effective interaction has to counteract the wrong trends with nucleon number of
all simplified schemes for center-of-mass correction which puts a wrong trend
with mass number into the effective interaction itself. The effect becomes
clearly visible when looking at the deformation energy of largely deformed
systems, e.g. superdeformed states or fission barriers of heavy nuclei.Comment: 12 pages LATeX, needs EPJ style files, 5 eps figures, accepted for
publication in Eur. Phys. J.
Microscopic Calculation of Fusion: Light to Heavy Systems
The density-constrained time-dependent Hartree-Fock (DC-TDHF) theory is a
fully microscopic approach for calculating heavy-ion interaction potentials and
fusion cross sections below and above the fusion barrier. We discuss recent
applications of DC-TDHF method to fusion of light and heavy neutron-rich
systems.Comment: 8 pages, 8 figure
- …