377 research outputs found

    Triaxiality and shape coexistence in Germanium isotopes

    Get PDF
    The ground-state deformations of the Ge isotopes are investigated in the framework of Gogny-Hartree-Fock-Bogoliubov (HFB) and Skyrme Hartree-Fock plus pairing in the BCS approximation. Five different Skyrme parametrizations are used to explore the influence of different effective masses and spin-orbit models. There is generally good agreement for binding energies and deformations (total quadrupole moment, triaxiality) with experimental data where available (i.e., in the valley of stability). All calculations agree in predicting a strong tendency for triaxial shapes in the Ge isotopes with only a few exceptions due to neutron (sub-)shell closures. The frequent occurrence of energetically very close shape isomers indicates that the underlying deformation energy landscape is very soft. The general triaxial softness of the Ge isotopes is demonstrated in the fully triaxial potential energy surface. The differences between the forces play an increasing role with increasing neutron number. This concerns particularly the influence of the spin-orbit model, which has a visible effect on the trend of binding energies towards the drip line. Different effective mass plays an important role in predicting the quadrupole and triaxial deformations. The pairing strength only weakly affects binding energies and total quadrupole deformations, but considerably influences triaxiality.Comment: 9 page

    Criteria for nonlinear parameters of relativistic mean field models

    Full text link
    Based on the properties of the critical and the actual effective masses of sigma and omega mesons, criteria to estimate the values of the isoscalar nonlinear terms of the standard relativistic mean field model that reproduce stable equations of state in respect to particle hole excitation at high densities are derived. The relation between nuclear matter stability and the symmetric nuclear matter properties are shown. The criteria are used to analyze in a more systematic way the high-density longitudinal and transverse instabilities of some parameter sets of relativistic mean field models. The critical role of the vector and vector-scalar nonlinear terms is also discussed quantitatively.Comment: 21 pages, 10 figures, 4 tables. Accepted for Publication in Physical review

    Neural Networks for Impact Parameter Determination

    Full text link
    An accurate impact parameter determination in a heavy ion collision is crucial for almost all further analysis. The capabilities of an artificial neural network are investigated to that respect. A novel input generation for the network is proposed, namely the transverse and longitudinal momentum distribution of all outgoing (or actually detectable) particles. The neural network approach yields an improvement in performance of a factor of two as compared to classical techniques. To achieve this improvement simple network architectures and a 5 by 5 input grid in (p_t,p_z) space are sufficient.Comment: Phys. Rev. C in print. Postscript-file also available at http://www.th.physik.uni-frankfurt.de/~bass/pub.htm

    Consequences of the center-of-mass correction in nuclear mean-field models

    Get PDF
    We study the influence of the scheme for the correction for spurious center-of-mass motion on the fit of effective interactions for self-consistent nuclear mean-field calculations. We find that interactions with very simple center-of-mass correction have significantly larger surface coefficients than interactions for which the center-of-mass correction was calculated for the actual many-body state during the fit. The reason for that is that the effective interaction has to counteract the wrong trends with nucleon number of all simplified schemes for center-of-mass correction which puts a wrong trend with mass number into the effective interaction itself. The effect becomes clearly visible when looking at the deformation energy of largely deformed systems, e.g. superdeformed states or fission barriers of heavy nuclei.Comment: 12 pages LATeX, needs EPJ style files, 5 eps figures, accepted for publication in Eur. Phys. J.

    Microscopic Calculation of Fusion: Light to Heavy Systems

    Full text link
    The density-constrained time-dependent Hartree-Fock (DC-TDHF) theory is a fully microscopic approach for calculating heavy-ion interaction potentials and fusion cross sections below and above the fusion barrier. We discuss recent applications of DC-TDHF method to fusion of light and heavy neutron-rich systems.Comment: 8 pages, 8 figure
    • …
    corecore