55,140 research outputs found

    Quantitative Description of V2O3V_2O_3 by the Hubbard Model in Infinite Dimensions

    Full text link
    We show that the analytic single-particle density of states and the optical conductivity for the half-filled Hubbard model on the Bethe lattice in infinite dimensions describe quantitatively the behavior of the gap and the kinetic energy ratio of the correlated insulator V2O3V_2O_3. The form of the optical conductivity shows ω3/2\omega^{3/2} rising and is quite similar to the experimental data, and the density of states shows ω1/2\omega^{1/2} behavior near the band edges.Comment: 9 pages, revtex, 4 figures upon reques

    Provable Deterministic Leverage Score Sampling

    Full text link
    We explain theoretically a curious empirical phenomenon: "Approximating a matrix by deterministically selecting a subset of its columns with the corresponding largest leverage scores results in a good low-rank matrix surrogate". To obtain provable guarantees, previous work requires randomized sampling of the columns with probabilities proportional to their leverage scores. In this work, we provide a novel theoretical analysis of deterministic leverage score sampling. We show that such deterministic sampling can be provably as accurate as its randomized counterparts, if the leverage scores follow a moderately steep power-law decay. We support this power-law assumption by providing empirical evidence that such decay laws are abundant in real-world data sets. We then demonstrate empirically the performance of deterministic leverage score sampling, which many times matches or outperforms the state-of-the-art techniques.Comment: 20th ACM SIGKDD Conference on Knowledge Discovery and Data Minin

    Fresnel operator, squeezed state and Wigner function for Caldirola-Kanai Hamiltonian

    Full text link
    Based on the technique of integration within an ordered product (IWOP) of operators we introduce the Fresnel operator for converting Caldirola-Kanai Hamiltonian into time-independent harmonic oscillator Hamiltonian. The Fresnel operator with the parameters A,B,C,D corresponds to classical optical Fresnel transformation, these parameters are the solution to a set of partial differential equations set up in the above mentioned converting process. In this way the exact wavefunction solution of the Schr\"odinger equation governed by the Caldirola-Kanai Hamiltonian is obtained, which represents a squeezed number state. The corresponding Wigner function is derived by virtue of the Weyl ordered form of the Wigner operator and the order-invariance of Weyl ordered operators under similar transformations. The method used here can be suitable for solving Schr\"odinger equation of other time-dependent oscillators.Comment: 6 pages, 2 figure

    A fluctuation-induced plasma transport diagnostic based upon fast-Fourier transform spectral analysis

    Get PDF
    A diagnostic, based on fast Fourier-transform spectral analysis techniques, that provides experimental insight into the relationship between the experimentally observable spectral characteristics of the fluctuations and the fluctuation-induced plasma transport is described. The model upon which the diagnostic technique is based and its experimental implementation is discussed. Some characteristic results obtained during the course of an experimental study of fluctuation-induced transport in the electric field dominated NASA Lewis bumpy torus plasma are presented

    Topological current of point defects and its bifurcation

    Full text link
    From the topological properties of a three dimensional vector order parameter, the topological current of point defects is obtained. One shows that the charge of point defects is determined by Hopf indices and Brouwer degrees. The evolution of point defects is also studied. One concludes that there exist crucial cases of branch processes in the evolution of point defects when the Jacobian D(Ï•x)=0D(\frac \phi x)=0.Comment: revtex,14 pages,no figur

    Fully gapped superconducting state in Au2Pb: a natural candidate for topological superconductor

    Full text link
    We measured the ultra-low-temperature specific heat and thermal conductivity of Au2_2Pb single crystal, a possible three-dimensional Dirac semimetal with a superconducting transition temperature Tc≈T_c \approx 1.05 K. The electronic specific heat can be fitted by a two-band s-wave model, which gives the gap amplitudes Δ1\Delta_1(0)/kBTck_BT_c = 1.38 and Δ2\Delta_2(0)/kBTck_BT_c = 5.25. From the thermal conductivity measurements, a negligible residual linear term κ0/T\kappa_0/T in zero field and a slow field dependence of κ0/T\kappa_0/T at low field are obtained. These results suggest that Au2_2Pb has a fully gapped superconducting state in the bulk, which is a necessary condition for topological superconductor if Au2_2Pb is indeed one.Comment: 6 pages, 4 figure

    Spontaneous phase oscillation induced by inertia and time delay

    Full text link
    We consider a system of coupled oscillators with finite inertia and time-delayed interaction, and investigate the interplay between inertia and delay both analytically and numerically. The phase velocity of the system is examined; revealed in numerical simulations is emergence of spontaneous phase oscillation without external driving, which turns out to be in good agreement with analytical results derived in the strong-coupling limit. Such self-oscillation is found to suppress synchronization and its frequency is observed to decrease with inertia and delay. We obtain the phase diagram, which displays oscillatory and stationary phases in the appropriate regions of the parameters.Comment: 5 pages, 6 figures, to pe published in PR
    • …
    corecore