1,086 research outputs found
Critical behaviour of the two-dimensional Ising susceptibility
We report computations of the short-distance and the long-distance (scaling)
contributions to the square-lattice Ising susceptibility in zero field close to
T_c. Both computations rely on the use of nonlinear partial difference
equations for the correlation functions. By summing the correlation functions,
we give an algorithm of complexity O(N^6) for the determination of the first N
series coefficients. Consequently, we have generated and analysed series of
length several hundred terms, generated in about 100 hours on an obsolete
workstation. In terms of a temperature variable, \tau, linear in T/T_c-1, the
short-distance terms are shown to have the form \tau^p(ln|\tau|)^q with p>=q^2.
To O(\tau^14) the long-distance part divided by the leading \tau^{-7/4}
singularity contains only integer powers of \tau. The presence of irrelevant
variables in the scaling function is clearly evident, with contributions of
distinct character at leading orders |\tau|^{9/4} and |\tau|^{17/4} being
identified.Comment: 11 pages, REVTex
Correlation functions for the three state superintegrable chiral Potts spin chain of finite lengths
We compute the correlation functions of the three state superintegrable
chiral Potts spin chain for chains of length 3,4,5. From these results we
present conjectures for the form of the nearest neighbor correlation function.Comment: 10 pages; references update
Q-Dependent Susceptibilities in Ferromagnetic Quasiperiodic Z-Invariant Ising Models
We study the q-dependent susceptibility chi(q) of a series of quasiperiodic
Ising models on the square lattice. Several different kinds of aperiodic
sequences of couplings are studied, including the Fibonacci and silver-mean
sequences. Some identities and theorems are generalized and simpler derivations
are presented. We find that the q-dependent susceptibilities are periodic, with
the commensurate peaks of chi(q) located at the same positions as for the
regular Ising models. Hence, incommensurate everywhere-dense peaks can only
occur in cases with mixed ferromagnetic-antiferromagnetic interactions or if
the underlying lattice is aperiodic. For mixed-interaction models the positions
of the peaks depend strongly on the aperiodic sequence chosen.Comment: LaTeX2e, 26 pages, 9 figures (27 eps files). v2: Misprints correcte
Bethe Ansatz solutions for Temperley-Lieb Quantum Spin Chains
We solve the spectrum of quantum spin chains based on representations of the
Temperley-Lieb algebra associated with the quantum groups for and . The tool is a
modified version of the coordinate Bethe Ansatz through a suitable choice of
the Bethe states which give to all models the same status relative to their
diagonalization. All these models have equivalent spectra up to degeneracies
and the spectra of the lower dimensional representations are contained in the
higher-dimensional ones. Periodic boundary conditions, free boundary conditions
and closed non-local boundary conditions are considered. Periodic boundary
conditions, unlike free boundary conditions, break quantum group invariance.
For closed non-local cases the models are quantum group invariant as well as
periodic in a certain sense.Comment: 28 pages, plain LaTex, no figures, to appear in Int. J. Mod. Phys.
New Results for the Correlation Functions of the Ising Model and the Transverse Ising Chain
In this paper we show how an infinite system of coupled Toda-type nonlinear
differential equations derived by one of us can be used efficiently to
calculate the time-dependent pair-correlations in the Ising chain in a
transverse field. The results are seen to match extremely well long large-time
asymptotic expansions newly derived here. For our initial conditions we use new
long asymptotic expansions for the equal-time pair correlation functions of the
transverse Ising chain, extending an old result of T.T. Wu for the 2d Ising
model. Using this one can also study the equal-time wavevector-dependent
correlation function of the quantum chain, a.k.a. the q-dependent diagonal
susceptibility in the 2d Ising model, in great detail with very little
computational effort.Comment: LaTeX 2e, 31 pages, 8 figures (16 eps files). vs2: Two references
added and minor changes of style. vs3: Corrections made and reference adde
Overlapping Unit Cells in 3d Quasicrystal Structure
A 3-dimensional quasiperiodic lattice, with overlapping unit cells and
periodic in one direction, is constructed using grid and projection methods
pioneered by de Bruijn. Each unit cell consists of 26 points, of which 22 are
the vertices of a convex polytope P, and 4 are interior points also shared with
other neighboring unit cells. Using Kronecker's theorem the frequencies of all
possible types of overlapping are found.Comment: LaTeX2e, 11 pages, 5 figures (8 eps files), uses iopart.class. Final
versio
Quantum Loop Subalgebra and Eigenvectors of the Superintegrable Chiral Potts Transfer Matrices
It has been shown in earlier works that for Q=0 and L a multiple of N, the
ground state sector eigenspace of the superintegrable tau_2(t_q) model is
highly degenerate and is generated by a quantum loop algebra L(sl_2).
Furthermore, this loop algebra can be decomposed into r=(N-1)L/N simple sl_2
algebras. For Q not equal 0, we shall show here that the corresponding
eigenspace of tau_2(t_q) is still highly degenerate, but splits into two
spaces, each containing 2^{r-1} independent eigenvectors. The generators for
the sl_2 subalgebras, and also for the quantum loop subalgebra, are given
generalizing those in the Q=0 case. However, the Serre relations for the
generators of the loop subalgebra are only proven for some states, tested on
small systems and conjectured otherwise. Assuming their validity we construct
the eigenvectors of the Q not equal 0 ground state sectors for the transfer
matrix of the superintegrable chiral Potts model.Comment: LaTeX 2E document, using iopart.cls with iopams packages. 28 pages,
uses eufb10 and eurm10 fonts. Typeset twice! Version 2: Details added,
improvements and minor corrections made, erratum to paper 2 included. Version
3: Small paragraph added in introductio
- …