150 research outputs found

    Both Stereoselective (R)- and (S)-1-Methyl-1,2,3,4-tetrahydroisoquinoline Enantiomers Protect Striatal Terminals Against Rotenone-Induced Suppression of Dopamine Release

    Get PDF
    1-Methyl-1,2,3,4-tetrahydroisoquinoline (1MeTIQ) is present in the human and rodent brain as a mixture of stereospecific (R)- and (S)-1MeTIQ enantiomers. The racemate, (R,S)-1MeTIQ, exhibits neuroprotective activity as shown in the earlier study by the authors, and In addition, it was suggested to play a crucial physiological role in the mammalian brain as an endogenous regulator of dopaminergic activity. In this article, we investigated the influence of stereospecific enantiomers of 1MeTIQ, (R)- and (S)-1MeTIQ (50 mg/kg i.p.) on rotenone-induced (3 mg/kg s.c.) behavioral and neurochemical changes in the rat. In behavioral study, in order to record dynamic motor function of rats, we measured locomotor activity using automated locomotor activity boxes. In biochemical studies, we analyzed in rat striatum the concentration of dopamine (DA) and its metabolites: intraneuronal DOPAC, extraneuronal 3-MT, and final HVA using HPLC with electrochemical detection. Otherwise, DA release was estimated by in vivo microdialysis study. The behavioral study has demonstrated that both acute and repeated (3 times) rotenone administration unimportantly depressed a basic locomotor activity in rat. (R)- and (S)-1MeTIQ stereoisomers (50 mg/kg i.p.) produced a modest behavioral activation both in naïve and rotenone-treated rats. The data from ex vivo neurochemical experiments have shown stereospecificity of 1MeTIQ enantiomers in respect of their effects on DA catabolism. (R)-1MeTIQ significantly increased both the level of the final DA metabolite, HVA (by about 70%), and the rate of DA metabolism (by 50%). In contrast to that, (S)-1MeTIQ significantly depressed DOPAC, HVA levels (by 60 and 40%, respectively), and attenuated the rate of DA metabolism (by about 60%). On the other hand, both the enantiomers increased the concentrations of DA and its extraneuronal metabolite, 3-MT in rat striatum. In vivo microdialysis study has shown that repeated but not acute administration of rotenone produced a deep and significant functional impairment of striatal DA release. Both (R)- and (S)- stereospecific enantiomers of 1MeTIQ antagonized rotenone-induced suppression of DA release; however, the effect of (R)-1MeTIQ was more strongly expressed in microdialysis study. In conclusion, we suggest that both chiral isomers of 1MeTIQ offer neuroprotection against rotenone-induced disturbances in the function of dopaminergic neurons and (R,S)-1MeTIQ will be useful as a drug with marked neuroprotective activity in the brain

    Synaptic Remodeling Depends on Signaling between Serotonin Receptors and the Extracellular Matrix

    Get PDF
    Rewiring of synaptic circuitry pertinent to memory formation has been associated with morphological changes in dendritic spines and with extracellular matrix (ECM) remodeling. Here, we mechanistically link these processes by uncovering a signaling pathway involving the serotonin 5-HT7 receptor (5-HT7R), matrix metalloproteinase 9 (MMP-9), the hyaluronan receptor CD44, and the small GTPase Cdc42. We highlight a physical interaction between 5-HT7R and CD44 (identified as an MMP-9 substrate in neurons) and find that 5-HT7R stimulation increases local MMP-9 activity, triggering dendritic spine remodeling, synaptic pruning, and impairment of long-term potentiation (LTP). The underlying molecular machinery involves 5-HT7R-mediated activation of MMP-9, which leads to CD44 cleavage followed by Cdc42 activation. One important physiological consequence of this interaction includes an increase in neuronal outgrowth and elongation of dendritic spines, which might have a positive effect on complex neuronal processes (e.g., reversal learning and neuronal regeneration)

    Promjene citokroma P450 jetre i mozga nakon višekratne primjene kokaina, samog ili u kombinaciji s nifedipinom

    Get PDF
    The objective of this study was to evaluate possible changes caused by multiple cocaine administration, alone and in combination with 1,4-dihydropiridine calcium channel blocker nifedipine, on cytochrome P450 levels both in the brain and liver. The experiment was done on male Wistar rats divided in four groups: control, treated with nifedipine (5 mg kg-1 i.p. for five days), treated with cocaine (15 mg kg-1 i.p. for five days), and treated with nifedipine and 30 minutes later with cocaine (also for five days). Total cytochrome P450 was measured spectrometrically in liver and brain microsomes. Multiple administration of cocaine alone and in combination with nifedipine did not change the brain P450 significantly. In the liver, nifedipine significantly increased P450 by 28 % vs. control. In contrast, cocaine significantly decreased P450 by 17 % vs. control. In animals treated with nifedipine and cocaine, cytochrome P450 increased 11 % (p<0.01) vs. control, decreased 12.5 % (p<0.001) vs. nifedipine group and increased 34 % (p<0.0001) vs. cocaine group. These results suggest that the cocaine and nifedipine interact at the metabolic level.Cilj je ovog istraživanja bio ocijeniti moguće promjene uzrokovane višestrukom primjenom kokaina kao jedinog agensa odnosno u kombinaciji s nifedipinom, 1,4-dihidropiridinskim blokatorom kalcijevih kanala, na razine citokroma P450 u mozgu i jetri štakora. Životinje (mužjaci Wistar štakora) podijeljene su u četiri skupine: kontrolnu skupinu, skupinu koja je primala nifedipin (5 mg kg-1 ip. pet dana), skupinu koja je primala kokain (15 mg kg-1 ip. pet dana) i skupinu koja je primala nifedipin te pola sata kasnije kokain (također pet dana). Ukupna količina citokroma P450 mjerena je spektrofotometrijski u mikrosomima jetre i mozga. Višestruka primjena samo kokaina odnosno u kombinaciji s nifedipinom nije značajno promijenila razine citokroma P450 u mozgu. U jetri je međutim nifedipin u odnosu na kontrolnu skupinu uzrokovao povišenje razina P450, za statistički značajnih 28 %. Kokain je uzrokovao statistički značajan pad razine P450 za 17 % u odnosu na kontrolnu skupinu. U životinja koje su primale kombinaciju nifedipina i kokaina razina citokroma P450 narasla je za 11 % (p<0.01) u odnosu na kontrolu, bila je 12.5 % (p<0.001) niža u odnosu na skupinu koja je primala nifedipin te viša za 34 % (p<0.0001) u odnosu na skupinu koja je primala samo kokain. Rezultati ovog istraživanja upućuju na interakcije ovih spojeva koje se odvijaju na razini metabolizm

    Nifedipin ublažava djelovanje kokaina na enzimsku aktivnost u mozgu i jetri te smanjuje njegovo izlučivanje putem mokraće

    Get PDF
    The aim of this study was to see how nifedipine counters the effects of cocaine on hepatic and brain enzymatic activity in rats and whether it affects urinary excretion of cocaine. Male Wistar rats were divided in four groups of six: control, nifedipine group (5 mg kg-1 i.p. a day for five days); cocaine group (15 mg kg-1 i.p. a day for five days), and the nifedipine+cocaine group. Twenty-four hours after the last administration, we measured neuronal nitric oxide synthase (nNOS) activity in the brain and cytochrome P450 quantity, ethylmorphine-N-demethylase, and anilinehydroxylase activity in the liver. Urine samples were collected 24 h after the last cocaine and cocaine+nifedipine administration. Urinary cocaine concentration was determined using the GC/MS method. Cocaine administration increased brain nNOS activity by 55 % (p<0.05) in respect to control, which indicates the development of tolerance and dependence. In the combination group, nifedipine decreased the nNOS activity in respect to the cocaine-only group. In the liver, cocaine significantly decreased and nifedipine significantly increased cytochrome P450, ethylmorphine-N-demethylase, and anilinehydroxylase in respect to control. In combination, nifedipine successfully countered cocaine effects on these enzymes. Urine cocaine excretion in the cocaine+nifedipine group significantly dropped (by 35 %) compared to the cocaine-only group. Our results have confirmed the effects of nifedipine against cocaine tolerance and development of dependence, most likely due to metabolic interactions between them.Cilj je ovoga istraživanja bio utvrditi kako nifedipin ublažava djelovanje kokaina na enzimsku aktivnost u mozgu i jetri Wistar štakora te utječe li na njegovo izlučivanje putem mokraće. Mužjaci su podijeljeni u četiri skupine po šest jedinki: kontrolnu skupinu, nifedipinsku skupinu koja je pet dana intraperitonealno primala nifedipin u dozi od 5 mg kg-1; skupinu koja je pet dana primala kokain u dozi od 15 mg kg-1 na dan te skupinu koja je zajedno primala nifedipin i kokain u odgovarajućim dozama. Dvadeset i četiri sata nakon posljednje doze izmjerena je enzimska aktivnost sintaze dušičnoga oksida (nNOS) u mozgu, razina citokroma P450 te aktivnosti enzima etilmorfi n-N-demetilaze i anilinhidroksilaze u jetri štakora. Uzorci mokraće prikupljeni su 24 sata nakon posljednje doze kokaina odnosno kombinacije nifedipina i kokaina. Koncentracija kokaina u mokraći izmjerena je s pomoću vezanog sustava plinske kromatografi je i spektrometrije masa. Kokain je povećao aktivnost nNOS-a u mozgu za 55 % (p<0,05) u odnosu na kontrolnu skupinu, što upućuje na stvaranje tolerancije i ovisnosti. U kombiniranoj skupini nifedipin je značajno smanjio aktivnost nNOS-a u odnosu na skupinu koja je primila samo kokain. Kokain je značajno snizio, a nifedipin značajno povisio razinu citokroma P450 u jetri te aktivnost etilmorfi n-N-demetilaze i anilinhidroksilaze u odnosu na kontrolnu skupinu. U kombiniranoj skupini nifedipin je uspješno ublažio djelovanje kokaina na aktivnost spomenutih enzima. Izlučivanje kokaina putem mokraće u kombiniranoj skupini bilo je značajno manje (35 %) nego u skupini koja je primala samo kokain. Ovi rezultati potvrđuju da nifedipin štiti od djelovanja kokaina i stvaranja ovisnosti, najvjerojatnije zbog interakcija u metabolizmu dvaju spojeva

    A High Throughput Screen Identifies Chemical Modulators of the Laminin-Induced Clustering of Dystroglycan and Aquaporin-4 in Primary Astrocytes

    Get PDF
    Background: Aquaporin-4 (AQP4) constitutes the principal water channel in the brain and is clusteredat the perivascular astrocyte endfeet. This specific distribution of AQP4 plays a major role in maintaining water homeostasis in the brain. A growing body of evidence points to a role ofthe dystroglycan complex and its interaction with perivascular laminin in the clusteringof AQP4 atperivascular astrocyte endfeet. Indeed, mice lacking components of this complex or in which laminindystroglycan interaction is disrupted show a delayed onset of brain edema due to a redistribution of AQP4 away from astrocyte endfeet. It is therefore important to identify inhibitory drugs of laminin-dependent AQP4 clustering which may prevent or reduce brain edema. Methodolgy/Principal Findings: In the present study we used primary rat astrocyte cultures toscreen a library of.3,500 chemicals and identified 6 drugs that inhibit the laminin-induced clustering of dystroglycan and AQP4. Detailed analysis of the inhibitory drug, chloranil, revealed that its inhibition of the clustering is due to the metalloproteinase-2-mediated ß-dystroglycan shedding and subsequent loss of laminin interaction with dystroglycan. Furthermore, chemical variants of chloranil induced a similar effect on ß-dystroglycan and this was prevented by the antioxidant N-acetylcysteine. Conclusion/Significance: These findings reveal the mechanism of action of chloranil in preventing the laminin-induced clustering of dystroglycan and AQP4 and validate the use of high-throughput screening as a tool to identify drugs tha

    Simvastatin Prevents Dopaminergic Neurodegeneration in Experimental Parkinsonian Models: The Association with Anti-Inflammatory Responses

    Get PDF
    Background: In addition to their original applications to lowering cholesterol, statins display multiple neuroprotective effects. N-methyl-D-aspartate (NMDA) receptors interact closely with the dopaminergic system and are strongly implicated in therapeutic paradigms of Parkinson’s disease (PD). This study aims to investigate how simvastatin impacts on experimental parkinsonian models via regulating NMDA receptors. Methodology/Principal Findings: Regional changes in NMDA receptors in the rat brain and anxiolytic-like activity were examined after unilateral medial forebrain bundle lesion by 6-hydroxydopamine via a 3-week administration of simvastatin. NMDA receptor alterations in the post-mortem rat brain were detected by [3H]MK-801(Dizocilpine) binding autoradiography. 6-hydroxydopamine treated PC12 was applied to investigate the neuroprotection of simvastatin, the association with NMDA receptors, and the anti-inflammation. 6-hydroxydopamine induced anxiety and the downregulation of NMDA receptors in the hippocampus, CA1(Cornu Ammonis 1 Area), amygdala and caudate putamen was observed in 6- OHDA(6-hydroxydopamine) lesioned rats whereas simvastatin significantly ameliorated the anxiety-like activity and restored the expression of NMDA receptors in examined brain regions. Significant positive correlations were identified between anxiolytic-like activity and the restoration of expression of NMDA receptors in the hippocampus, amygdala and CA1 following simvastatin administration. Simvastatin exerted neuroprotection in 6-hydroxydopamine-lesioned rat brain and 6- hydroxydopamine treated PC12, partially by regulating NMDA receptors, MMP9 (matrix metalloproteinase-9), and TNF-a (tumour necrosis factor-alpha). Conclusions/Significance: Our results provide strong evidence that NMDA receptor modulation after simvastatin treatment could partially explain its anxiolytic-like activity and anti-inflammatory mechanisms in experimental parkinsonian models. These findings contribute to a better understanding of the critical roles of simvastatin in treating PD via NMDA receptors

    Experience-Dependent Plasticity and Modulation of Growth Regulatory Molecules at Central Synapses

    Get PDF
    Structural remodeling or repair of neural circuits depends on the balance between intrinsic neuronal properties and regulatory cues present in the surrounding microenvironment. These processes are also influenced by experience, but it is still unclear how external stimuli modulate growth-regulatory mechanisms in the central nervous system. We asked whether environmental stimulation promotes neuronal plasticity by modifying the expression of growth-inhibitory molecules, specifically those of the extracellular matrix. We examined the effects of an enriched environment on neuritic remodeling and modulation of perineuronal nets in the deep cerebellar nuclei of adult mice. Perineuronal nets are meshworks of extracellular matrix that enwrap the neuronal perikaryon and restrict plasticity in the adult CNS. We found that exposure to an enriched environment induces significant morphological changes of Purkinje and precerebellar axon terminals in the cerebellar nuclei, accompanied by a conspicuous reduction of perineuronal nets. In the animals reared in an enriched environment, cerebellar nuclear neurons show decreased expression of mRNAs coding for key matrix components (as shown by real time PCR experiments), and enhanced activity of matrix degrading enzymes (matrix metalloproteinases 2 and 9), which was assessed by in situ zymography. Accordingly, we found that in mutant mice lacking a crucial perineuronal net component, cartilage link protein 1, perineuronal nets around cerebellar neurons are disrupted and plasticity of Purkinje cell terminal is enhanced. Moreover, all the effects of environmental stimulation are amplified if the afferent Purkinje axons are endowed with enhanced intrinsic growth capabilities, induced by overexpression of GAP-43. Our observations show that the maintenance and growth-inhibitory function of perineuronal nets are regulated by a dynamic interplay between pre- and postsynaptic neurons. External stimuli act on this interaction and shift the balance between synthesis and removal of matrix components in order to facilitate neuritic growth by locally dampening the activity of inhibitory cues
    corecore