11,060 research outputs found
The DRIFT Directional Dark Matter Detector and First Studies of the Head-Tail Effect
Measurement of the direction of the elastic nuclear recoil track and
ionization charge distribution along it, gives unique possibility for
unambiguous detection of the dark matter WIMP particle. Within current
radiation detection technologies only Time Projection Chambers filled with low
pressure gas are capable of such measurement. Due to the character of the
electronic and nuclear stopping powers of low energy nuclear recoils in the
gas, an asymmetric ionization charge distribution along their tracks may be
expected. Preliminary study of this effect, called Head-Tail, has been carried
out here using the SRIM simulation program for Carbon and Sulfur in 40 Torr
carbon disulfide, as relevant to the DRIFT detector. Investigations were
focused on ion tracks projected onto the axis of the initial direction of
motion in the energy range between 10 and 400 keV. Results indicate the likely
existence of an asymmetry influenced by two competing effects: the nature of
the stopping power and range straggling. The former tends to result in the Tail
being greater than the Head and the latter the reverse. It has been found that
for projected tracks the mean position of the ionization charge flows from
'head' to 'tail' with the magnitude depending on the ion type and its energy.Comment: To appear in the proceedings of Dark 2007 Sixth International
Heidelberg conference on "Dark Matter in Astro & Particle Physics", Sydney,
Australia 24th-28th September 200
Origin of bulk uniaxial anisotropy in zinc-blende dilute magnetic semiconductors
It is demonstrated that the nearest neighbor Mn pair on the GaAs (001)
surface has a lower energy for the [-110] direction comparing to the [110]
case. According to the group theory and the Luttinger's method of invariants,
this specific Mn distribution results in bulk uniaxial in-plane and
out-of-plane anisotropies. The sign and magnitude of the corresponding
anisotropy energies determined by a perturbation method and ab initio
computations are consistent with experimental results.Comment: 5 pages, 1 figur
Spin-torque efficiency enhanced by Rashba spin splitting in three dimensions
We examine a spin torque induced by the Rashba spin-orbit coupling in three
dimensions within the Boltzmann transport theory. We analytically calculate the
spin torque and show how its behavior is related with the spin topology in the
Fermi surfaces by studying the Fermi-energy dependence of the spin torque.
Moreover we discuss the spin-torque efficiency which is the spin torque divided
by the applied electric current in association with the current-induced
magnetization reversal. It is found that high spin-torque efficiency is
achieved when the Fermi energy lies on only the lower band and there exists an
optimal value for the Rashba parameter, where the spin-torque efficiency
becomes maximum.Comment: 7 pages, 5 figure
Raising Bi-O bands above the Fermi energy level of hole-doped BiSrCaCuO and other cuprate superconductors
The Fermi surface (FS) of BiSrCaCuO
(Bi2212) predicted by band theory displays Bi-related pockets around the
point, which have never been observed experimentally. We show that
when the effects of hole doping either by substituting Pb for Bi or by adding
excess O in Bi2212 are included, the Bi-O bands are lifted above the Fermi
energy () and the resulting first-principles FS is in remarkable accord
with measurements. With decreasing hole-doping the Bi-O bands drop below
and the system self-dopes below a critical hole concentration. Computations on
other Bi- as well as Tl- and Hg-based compounds indicate that lifting of the
cation-derived band with hole doping is a general property of the electronic
structures of the cuprates.Comment: 4 pages, 4 figures; PRL (2006, in press
Spin-dependent tunneling in modulated structures of (Ga,Mn)As
A model of coherent tunneling, which combines multi-orbital tight-binding
approximation with Landauer-B\"uttiker formalism, is developed and applied to
all-semiconductor heterostructures containing (Ga,Mn)As ferromagnetic layers. A
comparison of theoretical predictions and experimental results on
spin-dependent Zener tunneling, tunneling magnetoresistance (TMR), and
anisotropic magnetoresistance (TAMR) is presented. The dependence of spin
current on carrier density, magnetization orientation, strain, voltage bias,
and spacer thickness is examined theoretically in order to optimize device
design and performance.Comment: 9 pages, 13 figures, submitted to PR
Kinematics in Kapteyn's Selected Area 76: Orbital Motions Within the Highly Substructured Anticenter Stream
We have measured the mean three-dimensional kinematics of stars in Kapteyn's
Selected Area (SA) 76 (l=209.3, b=26.4 degrees) that were selected to be
Anticenter Stream (ACS) members on the basis of their radial velocities, proper
motions, and location in the color-magnitude diagram. From a total of 31 stars
ascertained to be ACS members primarily from its main sequence turnoff, a mean
ACS radial velocity (derived from spectra obtained with the Hydra multi-object
spectrograph on the WIYN 3.5m telescope) of V_helio = 97.0 +/- 2.8 km/s was
determined, with an intrinsic velocity dispersion sigma_0 = 12.8 \pm 2.1 km/s.
The mean absolute proper motions of these 31 ACS members are mu_alpha cos
(delta) = -1.20 +/- 0.34 mas/yr and mu_delta = -0.78 \pm 0.36 mas/yr. At a
distance to the ACS of 10 \pm 3 kpc, these measured kinematical quantities
produce an orbit that deviates by ~30 degrees from the well-defined swath of
stellar overdensity constituting the Anticenter Stream in the western portion
of the Sloan Digital Sky Survey footprint. We explore possible explanations for
this, and suggest that our data in SA 76 are measuring the motion of a
kinematically cold sub-stream among the ACS debris that was likely a fragment
of the same infalling structure that created the larger ACS system. The ACS is
clearly separated spatially from the majority of claimed Monoceros ring
detections in this region of the sky; however, with the data in hand, we are
unable to either confirm or rule out an association between the ACS and the
poorly-understood Monoceros structure.Comment: Accepted to ApJ. 48 pages, 20 figures, preprint forma
- …
