1,520 research outputs found

    Effects of strain on the electronic structure of VO_2

    Full text link
    We present cluster-DMFT (CTQMC) calculations based on a downfolded tight-binding model in order to study the electronic structure of vanadium dioxide (VO_2) both in the low-temperature (M_1) and high-temperature (rutile) phases. Motivated by the recent efforts directed towards tuning the physical properties of VO_2 by depositing films on different supporting surfaces of different orientations we performed calculations for different geometries for both phases. In order to investigate the effects of the different growing geometries we applied both contraction and expansion for the lattice parameter along the rutile c-axis in the 3-dimensional translationally invariant systems miming the real situation. Our main focus is to identify the mechanisms governing the formation of the gap characterizing the M_1 phase and its dependence on strain. We found that the increase of the band-width with compression along the axis corresponding to the rutile c-axis is more important than the Peierls bonding-antibonding splitting

    Spin-polarized surface states close to adatoms on Cu(111)

    Full text link
    We present a theoretical study of surface states close to 3d transition metal adatoms (Cr, Mn, Fe, Co, Ni and Cu) on a Cu(111) surface in terms of an embedding technique using the fully relativistic Korringa-Kohn-Rostoker method. For each of the adatoms we found resonances in the s-like states to be attributed to a localization of the surface states in the presence of an impurity. We studied the change of the s-like densities of states in the vicinity of the surface state band-edge due to scattering effects mediated via the adatom's d-orbitals. The obtained results show that a magnetic impurity causes spin-polarization of the surface states. In particular, the long-range oscillations of the spin-polarized s-like density of states around an Fe adatom are demonstrated.Comment: 5 pages, 5 figures, submitted to PR

    Theory of anisotropic Rashba splitting of surface states

    Full text link
    We investigate the surface Rashba effect for a surface of reduced in-plane symmetry. Formulating a k.p perturbation theory, we show that the Rashba splitting is anisotropic, in agreement with symmetry-based considerations. We show that the anisotropic Rashba splitting is due to the admixture of bulk states of different symmetry to the surface state, and it cannot be explained within the standard theoretical picture supposing just a normal-to-surface variation of the crystal potential. Performing relativistic ab initio calculations we find a remarkably large Rashba anisotropy for an unreconstructed Au(110) surface that is in the experimentally accessible range.Comment: 4 pages, 5 figure

    Giant magnetic anisotropy of the bulk antiferromagnets IrMn and IrMn3

    Full text link
    Theoretical predictions of the magnetic anisotropy of antiferromagnetic materials are demanding due to a lack of experimental techniques which are capable of a direct measurement of this quantity. At the same time it is highly significant due to the use of antiferromagnetic components in magneto-resistive sensor devices where the stability of the antiferromagnet is of upmost relevance. We perform an ab-initio study of the ordered phases of IrMn and IrMn3, the most widely used industrial antiferromagnets. Calculating the form and the strength of the magnetic anisotropy allows the construction of an effective spin model, which is tested against experimental measurements regarding the magnetic ground state and the Neel temperature. Our most important result is the extremely strong second order anisotropy for IrMn3 appearing in its frustrated triangular magnetic ground state, a surprising fact since the ordered L12 phase has a cubic symmetry. We explain this large anisotropy by the fact that cubic symmetry is locally broken for each of the three Mn sub-lattices.Comment: 4 pages, 4 figure

    Ab initio study of canted magnetism of finite atomic chains at surfaces

    Full text link
    By using ab initio methods on different levels we study the magnetic ground state of (finite) atomic wires deposited on metallic surfaces. A phenomenological model based on symmetry arguments suggests that the magnetization of a ferromagnetic wire is aligned either normal to the wire and, generally, tilted with respect to the surface normal or parallel to the wire. From a first principles point of view, this simple model can be best related to the so--called magnetic force theorem calculations being often used to explore magnetic anisotropy energies of bulk and surface systems. The second theoretical approach we use to search for the canted magnetic ground state is first principles adiabatic spin dynamics extended to the case of fully relativistic electron scattering. First, for the case of two adjacent Fe atoms an a Cu(111) surface we demonstrate that the reduction of the surface symmetry can indeed lead to canted magnetism. The anisotropy constants and consequently the ground state magnetization direction are very sensitive to the position of the dimer with respect to the surface. We also performed calculations for a seven--atom Co chain placed along a step edge of a Pt(111) surface. As far as the ground state spin orientation is concerned we obtain excellent agreement with experiment. Moreover, the magnetic ground state turns out to be slightly noncollinear.Comment: 8 pages, 5 figures; presented on the International Conference on Nanospintronics Design and Realizations, Kyoto, Japan, May 2004; to appear in J. Phys.: Cond. Matte

    Magnetism in systems with various dimensionality: A comparison between Fe and Co

    Full text link
    A systematic ab initio study is performed for the spin and orbital moments and for the validity of the sum rules for x-ray magnetic circular dichroism for Fe systems with various dimensionality (bulk, Pt-supported monolayers and monatomic wires, free-standing monolayers and monatomic wires). Qualitatively, the results are similar to those for the respective Co systems, with the main difference that for the monatomic Fe wires the term in the spin sum rule is much larger than for the Co wires. The spin and orbital moments induced in the Pt substrate are also discussed.Comment: 4 page

    Magnetic properties of Quantum Corrals from first principles calculations

    Full text link
    We present calculations for electronic and magnetic properties of surface states confined by a circular quantum corral built of magnetic adatoms (Fe) on a Cu(111) surface. We show the oscillations of charge and magnetization densities within the corral and the possibility of the appearance of spin--polarized states. In order to classify the peaks in the calculated density of states with orbital quantum numbers we analyzed the problem in terms of a simple quantum mechanical circular well model. This model is also used to estimate the behaviour of the magnetization and energy with respect to the radius of the circular corral. The calculations are performed fully relativistically using the embedding technique within the Korringa-Kohn-Rostoker method.Comment: 14 pages, 9 figures, submitted to J. Phys. Cond. Matt. special issue on 'Theory and Simulation of Nanostructures

    Thermally activated magnetization reversal in monoatomic magnetic chains on surfaces studied by classical atomistic spin-dynamics simulations

    Full text link
    We analyze the spontaneous magnetization reversal of supported monoatomic chains of finite length due to thermal fluctuations via atomistic spin-dynamics simulations. Our approach is based on the integration of the Landau-Lifshitz equation of motion of a classical spin Hamiltonian at the presence of stochastic forces. The associated magnetization lifetime is found to obey an Arrhenius law with an activation barrier equal to the domain wall energy in the chain. For chains longer than one domain-wall width, the reversal is initiated by nucleation of a reversed magnetization domain primarily at the chain edge followed by a subsequent propagation of the domain wall to the other edge in a random-walk fashion. This results in a linear dependence of the lifetime on the chain length, if the magnetization correlation length is not exceeded. We studied chains of uniaxial and tri-axial anisotropy and found that a tri-axial anisotropy leads to a reduction of the magnetization lifetime due to a higher reversal attempt rate, even though the activation barrier is not changed.Comment: 2nd version contains some improvements and new Appendi
    • …
    corecore