14 research outputs found

    Platelet Carbonic Anhydrase II, a Forgotten Enzyme, May Be Responsible for Aspirin Resistance

    Get PDF
    Background. Thromboembolic events constitute a major health problem, despite the steadily expanding arsenal of antiplatelet drugs. Hence, there is still a need to optimize the antiplatelet therapy. Objectives. The aim of our study was to verify a hypothesis that there are no differences in platelet proteome between two groups of healthy people representing different acetylsalicylic acid (aspirin) responses as assessed by the liquid chromatography/mass spectrometry (LC/MS) technique. Patients/Methods. A total of 61 healthy volunteers were recruited for the study. Physical examination and blood collection were followed by platelet-rich plasma aggregation assays and platelet separation for proteomic LC/MS analysis. Arachidonic acid- (AA-) induced aggregation (in the presence of aspirin) allowed to divide study participants into two groups aspirin-resistant (AR) and aspirin-sensitive (AS) ones. Subsequently, platelet proteome was compared in groups using the LC/MS analysis. Results. The LC/MS analysis of platelet proteome between groups revealed that out of all identified proteins, the only discriminatory protein, affecting aspirin responsiveness, is platelet carbonic anhydrase II (CA II). Conclusions. CA II is a platelet function modulator and should be taken into consideration as a cardiovascular event risk factor or therapeutic target

    Staff development for student retention In further and adult education

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:3901.363(2/8) / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    EPR Discovery of a New Pressure-Induced Low-Spin Phase in (2Me-5Et-PyH)[Fe(Th-5Cl-Sa) 2

    No full text
    Electron paramagnetic resonance studies of the high-spin (HS) ↔ low-spin (LS) transition in 2-methyl-5-ethyl-pyridine-5-chloro-salicylalt hiosemicarbazonatoferrate(III) performed under hydrostatic pressure up to 500 MPa in a temperature range of 80-310 K have revealed two modifications of the low spin complexes: low-pressure (LS1) and high-pressure (LS2) ones. Under atmospheric pressure LS1 appears on cooling and disappears on heating at 220 K. The hydrostatic pressure shifts the transition to higher temperatures. Below 275 K an increase in pressure to 410 MPa results in abrupt changes in the g-factor and widthΔ B of the EPR line indicating a transition to a new phase. The pressure-induced transition LS1 ↔ LS2 is almost independent of T up to 275 K, where at a pressure of 420 MPa a triple point is observed. The LS1↔ LS2 and HS↔ LS2 (at T>260 K) transitions occur with a large hysteresis of about 95 MPa. The process of the spin transition has been shown to begin with the formation of domains of LS complexes in the matrix of HS ones. The response of the domains to external factors has been studied

    High pressure impact on changes in potato starch granules

    No full text
    Air dry potato starch (84.9% d.s.) was subjected to pressurizing under the pressure of 50, 100, 250, 500, 750, 1000 and 2000 MPa for 1 h. The physical properties of pressurized starch, such as morphology, surface and crystalline structure, gelatinization parameters, were studied by means of scanning and atomic force microscopy (SEM/AFM), X-ray diffraction (X-ray), differential scanning calorimetry (DSC). The susceptibility to the amylolytic enzyme (α-amylase) was also measured. Application of pressure in the range of 50–2000 MPa results in an increase in the compressed potato starch bulk density, change in the contours of the granules from oval to polyhedral, increase in the roughness of the granule surface, vanishing of the X-ray reflexes generated by the orthogonal structure and weakening of the reflexes generated by the hexagonal structure, lowering of the enthalpy of starch gelatinization, and the enhancement of hydrolytic susceptibility of starch granules to the amylolytic enzyme
    corecore