12,047 research outputs found

    Corrections to scaling in entanglement entropy from boundary perturbations

    Full text link
    We investigate the corrections to scaling of the Renyi entropies of a region of size l at the end of a semi-infinite one-dimensional system described by a conformal field theory when the corrections come from irrelevant boundary operators. The corrections from irrelevant bulk operators with scaling dimension x have been studied by Cardy and Calabrese (2010), and they found not only the expected corrections of the form l^(4-2x) but also unusual corrections that could not have been anticipated by finite-size scaling arguments alone. However, for the case of perturbations from irrelevant boundary operators we find that the only corrections that can occur to leading order are of the form l^(2-2x_b) for boundary operators with scaling dimension x_b < 3/2, and l^(-1) when x_b > 3/2. When x_b=3/2 they are of the form l^(-1)log(l). A marginally irrelevant boundary perturbation will give leading corrections going as log(l)^(-3). No unusual corrections occur when perturbing with a boundary operator.Comment: 8 pages. Minor improvements and updated references. Published versio

    Entanglement entropy and quantum field theory: a non-technical introduction

    Full text link
    In these proceedings we give a pedagogical and non-technical introduction to the Quantum Field Theory approach to entanglement entropy. Particular attention is devoted to the one space dimensional case, with a linear dispersion relation, that, at a quantum critical point, can be effectively described by a two-dimensional Conformal Field Theory.Comment: 10 Pages, 2 figures. Talk given at the conference "Entanglement in Physical and information sciences", Centro Ennio de Giorgi, Pisa, December 200

    Quantum Quench from a Thermal Initial State

    Full text link
    We consider a quantum quench in a system of free bosons, starting from a thermal initial state. As in the case where the system is initially in the ground state, any finite subsystem eventually reaches a stationary thermal state with a momentum-dependent effective temperature. We find that this can, in some cases, even be lower than the initial temperature. We also study lattice effects and discuss more general types of quenches.Comment: 6 pages, 2 figures; short published version, added references, minor change

    Entanglement entropy of two disjoint intervals in c=1 theories

    Full text link
    We study the scaling of the Renyi entanglement entropy of two disjoint blocks of critical lattice models described by conformal field theories with central charge c=1. We provide the analytic conformal field theory result for the second order Renyi entropy for a free boson compactified on an orbifold describing the scaling limit of the Ashkin-Teller (AT) model on the self-dual line. We have checked this prediction in cluster Monte Carlo simulations of the classical two dimensional AT model. We have also performed extensive numerical simulations of the anisotropic Heisenberg quantum spin-chain with tree-tensor network techniques that allowed to obtain the reduced density matrices of disjoint blocks of the spin-chain and to check the correctness of the predictions for Renyi and entanglement entropies from conformal field theory. In order to match these predictions, we have extrapolated the numerical results by properly taking into account the corrections induced by the finite length of the blocks to the leading scaling behavior.Comment: 37 pages, 23 figure

    Entanglement entropy of two disjoint intervals in conformal field theory

    Get PDF
    We study the entanglement of two disjoint intervals in the conformal field theory of the Luttinger liquid (free compactified boson). Tr\rho_A^n for any integer n is calculated as the four-point function of a particular type of twist fields and the final result is expressed in a compact form in terms of the Riemann-Siegel theta functions. In the decompactification limit we provide the analytic continuation valid for all model parameters and from this we extract the entanglement entropy. These predictions are checked against existing numerical data.Comment: 34 pages, 7 figures. V2: Results for small x behavior added, typos corrected and refs adde

    The Ubiquitous 'c': from the Stefan-Boltzmann Law to Quantum Information

    Full text link
    I discuss various aspects of the role of the conformal anomaly number c in 2- and 1+1-dimensional critical behaviour: its appearance as the analogue of Stefan's constant, its fundamental role in conformal field theory, in the classification of 2d universality classes, and as a measure of quantum entanglement, among other topics.Comment: 8 pages, 2 figures. Boltzmann Medal Lecture, Statphys24, Cairns 2010. v3: minor revision

    Entanglement Entropy in Extended Quantum Systems

    Full text link
    After a brief introduction to the concept of entanglement in quantum systems, I apply these ideas to many-body systems and show that the von Neumann entropy is an effective way of characterising the entanglement between the degrees of freedom in different regions of space. Close to a quantum phase transition it has universal features which serve as a diagnostic of such phenomena. In the second part I consider the unitary time evolution of such systems following a `quantum quench' in which a parameter in the hamiltonian is suddenly changed, and argue that finite regions should effectively thermalise at late times, after interesting transient effects.Comment: 6 pages. Plenary talk delivered at Statphys 23, Genoa, July 200

    Field-theory results for three-dimensional transitions with complex symmetries

    Full text link
    We discuss several examples of three-dimensional critical phenomena that can be described by Landau-Ginzburg-Wilson ϕ4\phi^4 theories. We present an overview of field-theoretical results obtained from the analysis of high-order perturbative series in the frameworks of the ϵ\epsilon and of the fixed-dimension d=3 expansions. In particular, we discuss the stability of the O(N)-symmetric fixed point in a generic N-component theory, the critical behaviors of randomly dilute Ising-like systems and frustrated spin systems with noncollinear order, the multicritical behavior arising from the competition of two distinct types of ordering with symmetry O(n1n_1) and O(n2n_2) respectively.Comment: 9 pages, Talk at the Conference TH2002, Paris, July 200

    E-ELT constraints on runaway dilaton scenarios

    Get PDF
    We use a combination of simulated cosmological probes and astrophysical tests of the stability of the fine-structure constant α\alpha, as expected from the forthcoming European Extremely Large Telescope (E-ELT), to constrain the class of string-inspired runaway dilaton models of Damour, Piazza and Veneziano. We consider three different scenarios for the dark sector couplings in the model and discuss the observational differences between them. We improve previously existing analyses investigating in detail the degeneracies between the parameters ruling the coupling of the dilaton field to the other components of the universe, and studying how the constraints on these parameters change for different fiducial cosmologies. We find that if the couplings are small (e.g., αb=αV0\alpha_b=\alpha_V\sim0) these degeneracies strongly affect the constraining power of future data, while if they are sufficiently large (e.g., αb105αV0.05\alpha_b\gtrsim10^{-5}-\alpha_V\gtrsim0.05, as in agreement with current constraints) the degeneracies can be partially broken. We show that E-ELT will be able to probe some of this additional parameter space.Comment: 16 pages, 8 figures. Updated version matching the one accepted by JCA
    corecore