5 research outputs found
Celluphot: hybrid cellulose : bismuth oxybromide membrane for pollutant removal
The simultaneous removal of organic and inorganic pollutants from wastewater is a complex challenge and requires usually several sequential processes. Here, we demonstrate the fabrication of a hybrid material that can fulfill both tasks: i) the adsorption of metal ions due to the negative surface charge, and ii) photocatalytic decomposition of organic compounds. The bio-inorganic hybrid membrane consists of cellulose fibers to ensure mechanical stability and of Bi4O5Br2/BiOBr nanosheets. The composite is synthesized at low temperature of 115 °C directly on the cellulose membrane (CM) in order to maintain the carboxylic and hydroxyl groups on the surface that are responsible for the adsorption of metal ions. The composite can adsorb both Co(II) and Ni(II) ions and the kinetic study con-
firmed a good agreement of experimental data with the pseudo-second-order equation kinetic model. CM/Bi4O5Br2/BiOBrshowed higher affinity to Co(II) ions than to Ni(II) ions from diluted aqueous solutions. The bio-inorganic composite demonstrates a synergistic effect in the photocatalytic degradation of rhodamine B by exceeding the removal efficiency of single components. The fabrication of the biologic-inorganic interface was confirmed by various analytical techniques including SEM, STEM EDX mapping, XRD, and XPS. The presented approach for controlled formation of the bio-inorganic interface between natural material (cellulose) and nanoscopic inorganic materials of tailored morphology (Bi-O-Br system) enables the significant enhancement of materials functionality
The unexpected resurgence of Weyl geometry in late 20-th century physics
Weyl's original scale geometry of 1918 ("purely infinitesimal geometry") was
withdrawn by its author from physical theorizing in the early 1920s. It had a
comeback in the last third of the 20th century in different contexts: scalar
tensor theories of gravity, foundations of gravity, foundations of quantum
mechanics, elementary particle physics, and cosmology. It seems that Weyl
geometry continues to offer an open research potential for the foundations of
physics even after the turn to the new millennium.Comment: Completely rewritten conference paper 'Beyond Einstein', Mainz Sep
2008. Preprint ELHC (Epistemology of the LHC) 2017-02, 92 pages, 1 figur