8 research outputs found

    Slow freezing versus vitrifcation for the cryopreservation of zebrafsh (Danio rerio) ovarian tissue

    Get PDF
    The aim of the present study was to compare the efficiency of vitrification and slow freezing techniques for the cryopreservation of zebrafish ovarian tissue containing immature follicles. In Experiment 1, assessment of cell membrane integrity by trypan blue exclusion staining was used to select the best cryoprotectant solution for each cryopreservation method. Primary growth (PG) oocytes showed the best percentage of membrane integrity (63.5 ± 2.99%) when SF4 solution (2 M methanol + 0.1 M trehalose + 10% egg yolk solution) was employed. The vitrification solution, which presented the highest membrane integrity (V2; 1.5 M methanol + 5.5 M Me2SO + 0.5 M sucrose + 10% egg yolk solution) was selected for Experiment 2. Experiment 2 aimed to compare the vitrification and slow freezing techniques in the following parameters: morphology, oxidative stress, mitochondrial activity, and DNA damage. Frozen ovarian tissue showed higher ROS levels and lower mitochondrial activity than vitrified ovarian tissue. Ultrastructural observations of frozen PG oocytes showed rupture of the plasma membrane, loss of intracellular contents and a large number of damaged mitochondria, while vitrified PG oocytes had intact mitochondria and cell plasma membranes. We conclude that vitrification may be more effective than slow freezing for the cryopreservation of zebrafish ovarian tissue

    Tribulus terrestris protects against male reproductive damage induced by cyclophosphamide in mice

    Get PDF
    Tribulus terrestris (TT) has been considered as a potential stimulator of testosterone production, which has been related with steroidal saponins prevailing in this plant. Cyclophosphamide (CP) is the most commonly used anticancer and immunosuppressant drug, which causes several toxic effects, especially on the reproductive system. Patients who need to use CP therapy exhibit reduced fertility or infertility, which impacts both physically and emotionally on the decision to use this drug, especially among young men. We hypothesized that the treatment with TT dry extract would protect the male reproductive system against CP toxicity. Mice received dry extract of TT (11 mg/kg) or vehicle by gavage for 14 days. Saline or CP was injected intraperitoneally at a single dose (100 mg/kg) on the 14th day. Animals were euthanized 24 h after CP administration, and testes and epididymis were removed for biochemical and histopathological analysis and sperm evaluation. The dry extract of TT was evaluated by HPLC analysis and demonstrated the presence of protodioscin (1.48%, w/w). CP exposure increased lipid peroxidation, reactive species, and protein carbonylation and altered antioxidant enzymes (SOD, CAT, GPx, GST, and GR). Moreover, acute exposure to CP caused a reduction on 17 β-HSD activity, which may be related to the reduction in serum testosterone levels, histopathological changes observed in the testes, and the quality of the semen. The present study highlighted the role of TT dry extract to ameliorate the alterations induced by CP administration in mice testes, probably due to the presence of protodioscin

    Green tea infusion improves cyclophosphamide-induced damage on male mice reproductive system

    Get PDF
    Green tea presents catechins as its major components and it has a potential antioxidant activity. Cyclophosmamide (CP) is an antineoplastic and immunosuppressive agent, known to reduce fertility. In the present study, we evaluated the effect of green tea infusion on cyclophosphamide-induced damage in male mice reproductive system. Mice received green tea infusion (250 mg/kg) or vehicle by gavage for 14 days. Saline or CP were injected intraperitoneally at a single dose (100 mg/kg) at the 14th day. Animals were euthanized 24 h after CP administration and testes and epididymis were removed for biochemical analysis and sperm evaluation. Catechins concentration in green tea infusion was evaluated by HPLC. CP increased lipid peroxidation, DNA damage and superoxide dismutase activity whereas sperm concentration, glutathione peroxidase (GPx), glutathione S-transferase (GST) and 17β-hydroxysteroid (17β-HSD) dehydrogenase activities were reduced in both tissues tested. Catalase activity and protein carbonyl levels were changed only in testes, after CP administration. Green tea pre-treatment reduced significantly lipid peroxidation, protein carbonylation, DNA damage and restored GPx and GST activity in testes. In epididymis, therapy significantly increased sperm concentration and restored GPx and 17β-HSD activity. Green tea improves CP-induced damage on reproductive system, probably due to their high catechins content

    Tribulus terrestris Protects against Male Reproductive Damage Induced by Cyclophosphamide in Mice

    Get PDF
    Tribulus terrestris (TT) has been considered as a potential stimulator of testosterone production, which has been related with steroidal saponins prevailing in this plant. Cyclophosphamide (CP) is the most commonly used anticancer and immunosuppressant drug, which causes several toxic effects, especially on the reproductive system. Patients who need to use CP therapy exhibit reduced fertility or infertility, which impacts both physically and emotionally on the decision to use this drug, especially among young men. We hypothesized that the treatment with TT dry extract would protect the male reproductive system against CP toxicity. Mice received dry extract of TT (11 mg/kg) or vehicle by gavage for 14 days. Saline or CP was injected intraperitoneally at a single dose (100 mg/kg) on the 14th day. Animals were euthanized 24 h after CP administration, and testes and epididymis were removed for biochemical and histopathological analysis and sperm evaluation. The dry extract of TT was evaluated by HPLC analysis and demonstrated the presence of protodioscin (1.48%, w/w). CP exposure increased lipid peroxidation, reactive species, and protein carbonylation and altered antioxidant enzymes (SOD, CAT, GPx, GST, and GR). Moreover, acute exposure to CP caused a reduction on 17 β-HSD activity, which may be related to the reduction in serum testosterone levels, histopathological changes observed in the testes, and the quality of the semen. The present study highlighted the role of TT dry extract to ameliorate the alterations induced by CP administration in mice testes, probably due to the presence of protodioscin

    Tribulus terrestris protects against male reproductive damage induced by cyclophosphamide in mice

    Get PDF
    Tribulus terrestris (TT) has been considered as a potential stimulator of testosterone production, which has been related with steroidal saponins prevailing in this plant. Cyclophosphamide (CP) is the most commonly used anticancer and immunosuppressant drug, which causes several toxic effects, especially on the reproductive system. Patients who need to use CP therapy exhibit reduced fertility or infertility, which impacts both physically and emotionally on the decision to use this drug, especially among young men. We hypothesized that the treatment with TT dry extract would protect the male reproductive system against CP toxicity. Mice received dry extract of TT (11 mg/kg) or vehicle by gavage for 14 days. Saline or CP was injected intraperitoneally at a single dose (100 mg/kg) on the 14th day. Animals were euthanized 24 h after CP administration, and testes and epididymis were removed for biochemical and histopathological analysis and sperm evaluation. The dry extract of TT was evaluated by HPLC analysis and demonstrated the presence of protodioscin (1.48%, w/w). CP exposure increased lipid peroxidation, reactive species, and protein carbonylation and altered antioxidant enzymes (SOD, CAT, GPx, GST, and GR). Moreover, acute exposure to CP caused a reduction on 17 β-HSD activity, which may be related to the reduction in serum testosterone levels, histopathological changes observed in the testes, and the quality of the semen. The present study highlighted the role of TT dry extract to ameliorate the alterations induced by CP administration in mice testes, probably due to the presence of protodioscin

    Selenofuranoside Ameliorates Memory Loss in Alzheimer-Like Sporadic Dementia: AChE Activity, Oxidative Stress, and Inflammation Involvement

    No full text
    Alzheimer’s disease (AD) is becoming more common due to the increase in life expectancy. This study evaluated the effect of selenofuranoside (Se) in an Alzheimer-like sporadic dementia animal model. Male mice were divided into 4 groups: control, Aβ, Se, and Aβ + Se. Single administration of Aβ peptide (fragments 25–35; 3 nmol/3 μL) or distilled water was administered via intracerebroventricular (i.c.v.) injection. Selenofuranoside (5 mg/kg) or vehicle (canola oil) was administered orally 30 min before Aβ and for 7 subsequent days. Memory was tested through the Morris water maze (MWM) and step-down passive-avoidance (SDPA) tests. Antioxidant defenses along with reactive species (RS) were assessed. Inflammatory cytokines levels and AChE activity were measured. SOD activity was inhibited in the Aβ group whereas RS were increased. AChE activity, GSH, and IL-6 levels were increased in the Aβ group. These changes were reflected in impaired cognition and memory loss, observed in both behavioral tests. Se compound was able to protect against memory loss in mice in both behavioral tests. SOD and AChE activities as well as RS and IL-6 levels were also protected by Se administration. Therefore, Se is promising for further studies
    corecore