23 research outputs found
Unsupervised MRI Super-Resolution Using Deep External Learning and Guided Residual Dense Network with Multimodal Image Priors
Deep learning techniques have led to state-of-the-art single image
super-resolution (SISR) with natural images. Pairs of high-resolution (HR) and
low-resolution (LR) images are used to train the deep learning model (mapping
function). These techniques have also been applied to medical image
super-resolution (SR). Compared with natural images, medical images have
several unique characteristics. First, there are no HR images for training in
real clinical applications because of the limitations of imaging systems and
clinical requirements. Second, other modal HR images are available (e.g., HR
T1-weighted images are available for enhancing LR T2-weighted images). In this
paper, we propose an unsupervised SISR technique based on simple prior
knowledge of the human anatomy; this technique does not require HR images for
training. Furthermore, we present a guided residual dense network, which
incorporates a residual dense network with a guided deep convolutional neural
network for enhancing the resolution of LR images by referring to different HR
images of the same subject. Experiments on a publicly available brain MRI
database showed that our proposed method achieves better performance than the
state-of-the-art methods.Comment: 10 pages, 3 figure
Super-Resolution Based Patch-Free 3D Image Segmentation with High-Frequency Guidance
High resolution (HR) 3D images are widely used nowadays, such as medical
images like Magnetic Resonance Imaging (MRI) and Computed Tomography (CT).
However, segmentation of these 3D images remains a challenge due to their high
spatial resolution and dimensionality in contrast to currently limited GPU
memory. Therefore, most existing 3D image segmentation methods use patch-based
models, which have low inference efficiency and ignore global contextual
information. To address these problems, we propose a super-resolution (SR)
based patch-free 3D image segmentation framework that can realize HR
segmentation from a global-wise low-resolution (LR) input. The framework
contains two sub-tasks, of which semantic segmentation is the main task and
super resolution is an auxiliary task aiding in rebuilding the high frequency
information from the LR input. To furthermore balance the information loss with
the LR input, we propose a High-Frequency Guidance Module (HGM), and design an
efficient selective cropping algorithm to crop an HR patch from the original
image as restoration guidance for it. In addition, we also propose a
Task-Fusion Module (TFM) to exploit the inter connections between segmentation
and SR task, realizing joint optimization of the two tasks. When predicting,
only the main segmentation task is needed, while other modules can be removed
for acceleration. The experimental results on two different datasets show that
our framework has a four times higher inference speed compared to traditional
patch-based methods, while its performance also surpasses other patch-based and
patch-free models.Comment: Version #2 uploaded in Jul 10, 202
Recommended from our members
Research and Design of a Routing Protocol in Large-Scale Wireless Sensor Networks
无线传感器网络,作为全球未来十大技术之一,集成了传感器技术、嵌入式计算技术、分布式信息处理和自组织网技术,可实时感知、采集、处理、传输网络分布区域内的各种信息数据,在军事国防、生物医疗、环境监测、抢险救灾、防恐反恐、危险区域远程控制等领域具有十分广阔的应用前景。 本文研究分析了无线传感器网络的已有路由协议,并针对大规模的无线传感器网络设计了一种树状路由协议,它根据节点地址信息来形成路由,从而简化了复杂繁冗的路由表查找和维护,节省了不必要的开销,提高了路由效率,实现了快速有效的数据传输。 为支持此路由协议本文提出了一种自适应动态地址分配算——ADAR(AdaptiveDynamicAddre...As one of the ten high technologies in the future, wireless sensor network, which is the integration of micro-sensors, embedded computing, modern network and Ad Hoc technologies, can apperceive, collect, process and transmit various information data within the region. It can be used in military defense, biomedical, environmental monitoring, disaster relief, counter-terrorism, remote control of haz...学位:工学硕士院系专业:信息科学与技术学院通信工程系_通信与信息系统学号:2332007115216
Real-Time Haze Removal Using Normalised Pixel-Wise Dark-Channel Prior and Robust Atmospheric-Light Estimation
This study proposes real-time haze removal from a single image using normalised pixel-wise dark-channel prior (DCP). DCP assumes that at least one RGB colour channel within most local patches in a haze-free image has a low-intensity value. Since the spatial resolution of the transmission map depends on the patch size and it loses the detailed structure with large patch sizes, original work refines the transmission map using an image-matting technique. However, it requires high computational cost and is not adequate for real-time application. To solve these problems, we use normalised pixel-wise haze estimation without losing the detailed structure of the transmission map. This study also proposes robust atmospheric-light estimation using a coarse-to-fine search strategy and down-sampled haze estimation for acceleration. Experiments with actual and simulated haze images showed that the proposed method achieves real-time results of visually and quantitatively acceptable quality compared with other conventional methods of haze removal
Accurate BAPL Score Classification of Brain PET Images Based on Convolutional Neural Networks with a Joint Discriminative Loss Function †
Alzheimer’s disease (AD) is an irreversible progressive cerebral disease with most of its symptoms appearing after 60 years of age. Alzheimer’s disease has been largely attributed to accumulation of amyloid beta (Aβ), but a complete cure has remained elusive. 18F-Florbetaben amyloid positron emission tomography (PET) has been shown as a more powerful tool for understanding AD-related brain changes than magnetic resonance imaging and computed tomography. In this paper, we propose an accurate classification method for scoring brain amyloid plaque load (BAPL) based on deep convolutional neural networks. A joint discriminative loss function was formulated by adding a discriminative intra-loss function to the conventional (cross-entropy) loss function. The performance of the proposed joint loss function was compared with that of the conventional loss function in three state-of-the-art deep neural network architectures. The intra-loss function significantly improved the BAPL classification performance. In addition, we showed that the mix-up data augmentation method, originally proposed for natural image classification, was also useful for medical image classification