12 research outputs found
Recommended from our members
"SIT" with Emx1-NuTRAP Mice: Simultaneous INTACT and TRAP for Paired Transcriptomic and Epigenetic Sequencing.
Epigenetic regulation of transcription is gaining increasing importance in the study of neurobiology. The advent of sequencing technology has enabled the study of this regulation across the entire genome and transcriptome. However, modern methods that allow the correlation of transcriptomic data with epigenomic regulation have had several key limitations, including use of separate tissue sources and detection of low-expression genes. This article describes a method combining isolation of nuclei tagged in specific cell types (INTACT) with translating ribosome affinity purification (TRAP) in the same cell homogenate, referred to as Simultaneous INTACT and TRAP (SIT). We used this technical approach to directly couple transcriptomic sequencing with epigenomic data in neurons derived from the mouse hippocampus. We demonstrate this method with an Emx1-NuTRAP transgenic mouse model. Here, we present protocols for SIT and for the generation and validation of the Emx1-NuTRAP mouse model that we used to demonstrate SIT. These methods enable cell type-specific comparison of translating mRNA and chromatin data from the same set of cells. Using SIT and the Emx1-NuTRAP transgenic mouse model, researchers can compare epigenomic data to transcriptomic data in the same set of hippocampal excitatory neurons. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Emx1-NuTRAP transgenic mouse line for labeling excitatory neurons in the hippocampus Basic Protocol 2: SIT: Simultaneous Isolation of nuclei tagged in specific cell types (INTACT) and Translating ribosome affinity purification (TRAP)
Recommended from our members
A Unique Mouse Model of Early Life Exercise Enables Hippocampal Memory and Synaptic Plasticity.
Physical exercise is a powerful modulator of learning and memory. Mechanisms underlying the cognitive benefits of exercise are well documented in adult rodents. Exercise studies targeting postnatal periods of hippocampal maturation (specifically targeting periods of synaptic reorganization and plasticity) are lacking. We characterize a model of early-life exercise (ELE) in male and female mice designed with the goal of identifying critical periods by which exercise may have a lasting impact on hippocampal memory and synaptic plasticity. Mice freely accessed a running wheel during three postnatal periods: the 4th postnatal week (juvenile ELE, P21-27), 6th postnatal week (adolescent ELE, P35-41), or 4th-6th postnatal weeks (juvenile-adolescent ELE, P21-41). All exercise groups increased their running distances during ELE. When exposed to a subthreshold learning stimulus, juv ELE and juv-adol ELE formed lasting long-term memory for an object location memory task, whereas sedentary and adol ELE mice did not. Electrophysiological experiments revealed enhanced long-term potentiation in hippocampal CA1 in the juvenile-adolescent ELE group. I/O curves were also significantly modulated in all mice that underwent ELE. Our results suggest that early-life exercise, specifically during the 4th postnatal week, can enable hippocampal memory, synaptic plasticity, and alter hippocampal excitability when occurring during postnatal periods of hippocampal maturation
Recommended from our members
A Unique Mouse Model of Early Life Exercise Enables Hippocampal Memory and Synaptic Plasticity.
Physical exercise is a powerful modulator of learning and memory. Mechanisms underlying the cognitive benefits of exercise are well documented in adult rodents. Exercise studies targeting postnatal periods of hippocampal maturation (specifically targeting periods of synaptic reorganization and plasticity) are lacking. We characterize a model of early-life exercise (ELE) in male and female mice designed with the goal of identifying critical periods by which exercise may have a lasting impact on hippocampal memory and synaptic plasticity. Mice freely accessed a running wheel during three postnatal periods: the 4th postnatal week (juvenile ELE, P21-27), 6th postnatal week (adolescent ELE, P35-41), or 4th-6th postnatal weeks (juvenile-adolescent ELE, P21-41). All exercise groups increased their running distances during ELE. When exposed to a subthreshold learning stimulus, juv ELE and juv-adol ELE formed lasting long-term memory for an object location memory task, whereas sedentary and adol ELE mice did not. Electrophysiological experiments revealed enhanced long-term potentiation in hippocampal CA1 in the juvenile-adolescent ELE group. I/O curves were also significantly modulated in all mice that underwent ELE. Our results suggest that early-life exercise, specifically during the 4th postnatal week, can enable hippocampal memory, synaptic plasticity, and alter hippocampal excitability when occurring during postnatal periods of hippocampal maturation
Blocking CRH receptors in adults mitigates age-related memory impairments provoked by early-life adversity.
In humans, early-life adversity is associated with impairments in learning and memory that may emerge later in life. In rodent models, early-life adversity directly impacts hippocampal neuron structure and connectivity with progressive deficits in long-term potentiation and spatial memory function. Previous work has demonstrated that augmented release and actions of the stress-activated neuropeptide, CRH, contribute to the deleterious effects of early-life adversity on hippocampal dendritic arborization, synapse number and memory-function. Early-life adversity increases hippocampal CRH expression, and blocking hippocampal CRH receptor type-1 (CRHR1) immediately following early-life adversity prevented the consequent memory and LTP defects. Here, we tested if blocking CRHR1 in young adults ameliorates early-life adversity-provoked memory deficits later in life. A weeklong course of a CRHR1 antagonist in 2-month-old male rats prevented early-life adversity-induced deficits in object recognition memory that emerged by 12 months of age. Surprisingly, whereas the intervention did not mitigate early-life adversity-induced spatial memory losses at 4 and 8 months, it restored hippocampus-dependent location memory in 12-month-old rats that experienced early-life adversity. Neither early-life adversity nor CRHR1 blockade in the adult influenced anxiety- or depression-related behaviors. Altogether, these findings suggest that cognitive deficits attributable to adversity during early-life-sensitive periods are at least partially amenable to interventions later in life
Recommended from our members
Blocking CRH receptors in adults mitigates age-related memory impairments provoked by early-life adversity.
In humans, early-life adversity is associated with impairments in learning and memory that may emerge later in life. In rodent models, early-life adversity directly impacts hippocampal neuron structure and connectivity with progressive deficits in long-term potentiation and spatial memory function. Previous work has demonstrated that augmented release and actions of the stress-activated neuropeptide, CRH, contribute to the deleterious effects of early-life adversity on hippocampal dendritic arborization, synapse number and memory-function. Early-life adversity increases hippocampal CRH expression, and blocking hippocampal CRH receptor type-1 (CRHR1) immediately following early-life adversity prevented the consequent memory and LTP defects. Here, we tested if blocking CRHR1 in young adults ameliorates early-life adversity-provoked memory deficits later in life. A weeklong course of a CRHR1 antagonist in 2-month-old male rats prevented early-life adversity-induced deficits in object recognition memory that emerged by 12 months of age. Surprisingly, whereas the intervention did not mitigate early-life adversity-induced spatial memory losses at 4 and 8 months, it restored hippocampus-dependent location memory in 12-month-old rats that experienced early-life adversity. Neither early-life adversity nor CRHR1 blockade in the adult influenced anxiety- or depression-related behaviors. Altogether, these findings suggest that cognitive deficits attributable to adversity during early-life-sensitive periods are at least partially amenable to interventions later in life
Early-life exercise primes the murine neural epigenome to facilitate gene expression and hippocampal memory consolidation
Aerobic exercise is well known to promote neuroplasticity and hippocampal memory. In the developing brain, early-life exercise (ELE) can lead to persistent improvements in hippocampal function, yet molecular mechanisms underlying this phenomenon have not been fully explored. In this study, transgenic mice harboring the "NuTRAP" (Nuclear tagging and Translating Ribosome Affinity Purification) cassette in Emx1 expressing neurons ("Emx1-NuTRAP" mice) undergo ELE during adolescence. We then simultaneously isolate and sequence translating mRNA and nuclear chromatin from single hippocampal homogenates containing Emx1-expressing neurons. This approach allowed us to couple translatomic with epigenomic sequencing data to evaluate the influence of histone modifications H4K8ac and H3K27me3 on translating mRNA after ELE. A subset of ELE mice underwent a hippocampal learning task to determine the gene expression and epigenetic underpinnings of ELE's contribution to improved hippocampal memory performance. From this experiment, we discover gene expression - histone modification relationships that may play a critical role in facilitated memory after ELE. Our data reveal candidate gene-histone modification interactions and implicate gene regulatory pathways involved in ELE's impact on hippocampal memory
Hippocampal dysfunction and cognitive impairments provoked by chronic early-life stress involve excessive activation of CRH receptors
Chronic stress impairs learning and memory in humans and rodents and disrupts long-term potentiation (LTP) in animal models. These effects are associated with structural changes in hippocampal neurons, including reduced dendritic arborization. Unlike the generally reversible effects of chronic stress on adult rat hippocampus, we have previously found that the effects of early-life stress endure and worsen during adulthood, yet the mechanisms for these clinically important sequelae are poorly understood. Stress promotes secretion of the neuropeptide corticotropin-releasing hormone (CRH) from hippocampal interneurons, activating receptors (CRF1) located on pyramidal cell dendrites. Additionally, chronic CRF1 occupancy negatively affects dendritic arborization in mouse organotypic slice cultures, similar to the pattern observed in middle-aged, early-stressed (CES) rats. Here we found that CRH-expression is augmented in hippocampus of middle-aged CES rats, and then tested if the morphological defects and poor memory performance in these animals involve excessive activation of CRF1 receptors. Central or peripheral administration of a CRF1 blocker following the stress period improved memory performance of CES rats in novel object recognition tests and in the Morris water maze. Consonant with these effects, the antagonist also prevented dendritic atrophy and LTP attenuation in CA1 Schaffer collateral synapses. Together, these data suggest that persistently elevated hippocampal CRH-CRF1 interaction contributes importantly to the structural and cognitive impairments associated with early-life stress. Reducing CRF1 occupancy post-hoc normalized hippocampal function during middle-age, thus offering potential mechanism-based therapeutic interventions for children affected by chronic stress
Hippocampal Dysfunction and Cognitive Impairments Provoked by Chronic Early-Life Stress Involve Excessive Activation of CRH Receptors
Chronic stress impairs learning and memory in humans and rodents and disrupts long-term potentiation (LTP) in animal models. These effects are associated with structural changes in hippocampal neurons, including reduced dendritic arborization. Unlike the generally reversible effects of chronic stress on adult rat hippocampus, we have previously found that the effects of early-life stress endure and worsen during adulthood, yet the mechanisms for these clinically important sequelae are poorly understood. Stress promotes secretion of the neuropeptide corticotropin-releasing hormone (CRH) from hippocampal interneurons, activating receptors (CRF(1)) located on pyramidal cell dendrites. Additionally, chronic CRF(1) occupancy negatively affects dendritic arborization in mouse organotypic slice cultures, similar to the pattern observed in middle-aged, early-stressed (CES) rats. Here we found that CRH-expression is augmented in hippocampus of middle-aged CES rats, and then tested if the morphological defects and poor memory performance in these animals involve excessive activation of CRF(1) receptors. Central or peripheral administration of a CRF(1) blocker following the stress period improved memory performance of CES rats in novel object recognition tests and in the Morris water maze. Consonant with these effects, the antagonist also prevented dendritic atrophy and LTP attenuation in CA1 Schaffer collateral synapses. Together, these data suggest that persistently elevated hippocampal CRH-CRF(1) interaction contributes importantly to the structural and cognitive impairments associated with early-life stress. Reducing CRF(1) occupancy post-hoc normalized hippocampal function during middle-age, thus offering potential mechanism-based therapeutic interventions for children affected by chronic stress
Recommended from our members
Hippocampal dysfunction and cognitive impairments provoked by chronic early-life stress involve excessive activation of CRH receptors
Chronic stress impairs learning and memory in humans and rodents and disrupts long-term potentiation (LTP) in animal models. These effects are associated with structural changes in hippocampal neurons, including reduced dendritic arborization. Unlike the generally reversible effects of chronic stress on adult rat hippocampus, we have previously found that the effects of early-life stress endure and worsen during adulthood, yet the mechanisms for these clinically important sequelae are poorly understood. Stress promotes secretion of the neuropeptide corticotropin-releasing hormone (CRH) from hippocampal interneurons, activating receptors (CRF1) located on pyramidal cell dendrites. Additionally, chronic CRF1 occupancy negatively affects dendritic arborization in mouse organotypic slice cultures, similar to the pattern observed in middle-aged, early-stressed (CES) rats. Here we found that CRH-expression is augmented in hippocampus of middle-aged CES rats, and then tested if the morphological defects and poor memory performance in these animals involve excessive activation of CRF1 receptors. Central or peripheral administration of a CRF1 blocker following the stress period improved memory performance of CES rats in novel object recognition tests and in the Morris water maze. Consonant with these effects, the antagonist also prevented dendritic atrophy and LTP attenuation in CA1 Schaffer collateral synapses. Together, these data suggest that persistently elevated hippocampal CRH-CRF1 interaction contributes importantly to the structural and cognitive impairments associated with early-life stress. Reducing CRF1 occupancy post-hoc normalized hippocampal function during middle-age, thus offering potential mechanism-based therapeutic interventions for children affected by chronic stress