3,761 research outputs found

    On the estimate of the sigma^(I = 1)_(KN)(0)-term value from the energy level shift of kaonic hydrogen in the ground state

    Full text link
    Using the experimental data on the energy level shift of kaonic hydrogen in the ground state (the DEAR Collaboration, Phys. Rev. Lett. 94, 212302 (2005)) and the theoretical value of the energy level shift, calculated within the phenomenological quantum field theoretic approach to the description of strong low-energy anti-K N and anti-K NN interactions developed at Stefan Meyer Institut fuer subatomare Physik in Vienna, we estimate the value of the sigma^(I = 1)_(KN)(0)-term of low-energy anti-K N scattering. We get sigma^(I = 1)_(KN)(0) = (433 +/- 85) MeV. This testifies the absence of strange quarks in the proton structure.Comment: 7 pages, no figure

    Supernova Ia: a Converging Delayed Detonation Wave

    Get PDF
    A model of a carbon-oxygen (C--O) presupernova core with an initial mass 1.33 M_\odot, an initial carbon mass fraction 0.27, and with an average mass growth-rate 5 x 10^{-7} M_\odot/yr due to accretion in a binary system was evolved from initial central density 10^9 g/cm^3, and temperature 2.05 x 10^8 K through convective core formation and its subsequent expansion to the carbon runaway at the center. The only thermonuclear reaction contained in the equations of evolution and runaway was the carbon burning reaction 12C + 12C with an energy release corresponding to the full transition of carbon and oxygen (with the same rate as carbon) into 56Ni. As a parameter we take \alpha_c - a ratio of a mixing length to the size of the convective zone. In spite of the crude assumptions, we obtained a pattern of the runaway acceptable for the supernova theory with the strong dependence of its duration on \alpha_c. In the variants with large enough values of \alpha_c=4.0 x 10^{-3} and 3.0 x 10^{-3} the fuel combustion occurred from the very beginning as a prompt detonation. In the range of 2.0 x 10^{-3} >= \alpha_c >= 3.0 x 10^{-4} the burning started as a deflagration with excitation of stellar pulsations with growing amplitude. Eventually, the detonation set in, which was activated near the surface layers of the presupernova (with m about 1.33 M_\odot) and penetrated into the star down to the deflagration front. Excitation of model pulsations and formation of a detonation front are described in detail for the variant with \alpha_c=1.0 x 10^{-3}.Comment: 13 pages, 11 figures, to appear in Astronomy Letter

    New Cataclysmic Variables and other Exotic Binaries in the Globular Cluster 47 Tucanae

    Full text link
    We present 22 new (+3 confirmed) cataclysmic variables (CVs) in the non core-collapsed globular cluster 47 Tucanae (47 Tuc). The total number of CVs in the cluster is now 43, the largest sample in any globular cluster so far. For the identifications we used near-ultraviolet (NUV) and optical images from the Hubble Space Telescope, in combination with X-ray results from the Chandra X-ray Observatory. This allowed us to build the deepest NUV CV luminosity function of the cluster to date. We found that the CVs in 47 Tuc are more concentrated towards the cluster center than the main sequence turnoff stars. We compared our results to the CV populations of the core-collapsed globular clusters NGC 6397 and NGC 6752. We found that 47 Tuc has fewer bright CVs per unit mass than those two other clusters. That suggests that dynamical interactions in core-collapsed clusters play a major role creating new CVs. In 47 Tuc, the CV population is probably dominated by primordial and old dynamically formed systems. We estimated that the CVs in 47 Tuc have total masses of approx. 1.4 M_sun. We also found that the X-ray luminosity function of the CVs in the three clusters is bimodal. Additionally, we discuss a possible double degenerate system and an intriguing/unclassified object. Finally, we present four systems that could be millisecond pulsar companions given their X-ray and NUV/optical colors. For one of them we present very strong evidence for being an ablated companion. The other three could be CO- or He-WDs.Comment: Published on MNRAS. 31 Pages, 23 Figures, 5 Tables. Minor changes with respect to previous arXiv versio

    Self-Duality in D <= 8-dimensional Euclidean Gravity

    Full text link
    In the context of D-dimensional Euclidean gravity, we define the natural generalisation to D-dimensions of the self-dual Yang-Mills equations, as duality conditions on the curvature 2-form of a Riemannian manifold. Solutions to these self-duality equations are provided by manifolds of SU(2), SU(3), G_2 and Spin(7) holonomy. The equations in eight dimensions are a master set for those in lower dimensions. By considering gauge fields propagating on these self-dual manifolds and embedding the spin connection in the gauge connection, solutions to the D-dimensional equations for self-dual Yang-Mills fields are found. We show that the Yang-Mills action on such manifolds is topologically bounded from below, with the bound saturated precisely when the Yang-Mills field is self-dual. These results have a natural interpretation in supersymmetric string theory.Comment: 9 pages, Latex, factors in eqn. (6) corrected, acknowledgement and reference added, typos fixe

    Formation of black-hole X-ray binaries in globular clusters

    Full text link
    Inspired by the recent identification of the first candidate BH-WD X-ray binaries, where the compact accretors may be stellar-mass black hole candidates in extragalactic globular clusters, we explore how such binaries could be formed in a dynamical environment. We provide analyses of the formation rates via well known formation channels like binary exchange and physical collisions and propose that the only possibility to form BH-WD binaries is via coupling these usual formation channels with subsequent hardening and/or triple formation. Indeed, we find that the most important mechanism to make a BH-WD X-ray binary from an initially dynamically formed BH-WD binary is triple induced mass transfer via the Kozai mechanism. Even using the most optimistic estimates for the formation rates, we cannot match the observationally inferred production rates if black holes undergo significant evaporation from the cluster or form a completely detached subcluster of black holes. We estimate that at least 1% of all formed black holes, or presumably 10% of the black holes present in the core now, must be involved in interactions with the rest of the core stellar population.Comment: 10 pages, 2 figures, submitted to Ap

    Instantons and Yang-Mills Flows on Coset Spaces

    Full text link
    We consider the Yang-Mills flow equations on a reductive coset space G/H and the Yang-Mills equations on the manifold R x G/H. On nonsymmetric coset spaces G/H one can introduce geometric fluxes identified with the torsion of the spin connection. The condition of G-equivariance imposed on the gauge fields reduces the Yang-Mills equations to phi^4-kink equations on R. Depending on the boundary conditions and torsion, we obtain solutions to the Yang-Mills equations describing instantons, chains of instanton-anti-instanton pairs or modifications of gauge bundles. For Lorentzian signature on R x G/H, dyon-type configurations are constructed as well. We also present explicit solutions to the Yang-Mills flow equations and compare them with the Yang-Mills solutions on R x G/H.Comment: 1+12 page

    Dynamical model and nonextensive statistical mechanics of a market index on large time windows

    Full text link
    The shape and tails of partial distribution functions (PDF) for a financial signal, i.e. the S&P500 and the turbulent nature of the markets are linked through a model encompassing Tsallis nonextensive statistics and leading to evolution equations of the Langevin and Fokker-Planck type. A model originally proposed to describe the intermittent behavior of turbulent flows describes the behavior of normalized log-returns for such a financial market index, for small and large time windows, both for small and large log-returns. These turbulent market volatility (of normalized log-returns) distributions can be sufficiently well fitted with a χ2\chi^2-distribution. The transition between the small time scale model of nonextensive, intermittent process and the large scale Gaussian extensive homogeneous fluctuation picture is found to be at ca.ca. a 200 day time lag. The intermittency exponent (κ\kappa) in the framework of the Kolmogorov log-normal model is found to be related to the scaling exponent of the PDF moments, -thereby giving weight to the model. The large value of κ\kappa points to a large number of cascades in the turbulent process. The first Kramers-Moyal coefficient in the Fokker-Planck equation is almost equal to zero, indicating ''no restoring force''. A comparison is made between normalized log-returns and mere price increments.Comment: 40 pages, 14 figures; accepted for publication in Phys Rev

    Models of Individual Blue Stragglers

    Full text link
    This chapter describes the current state of models of individual blue stragglers. Stellar collisions, binary mergers (or coalescence), and partial or ongoing mass transfer have all been studied in some detail. The products of stellar collisions retain memory of their parent stars and are not fully mixed. Very high initial rotation rates must be reduced by an unknown process to allow the stars to collapse to the main sequence. The more massive collision products have shorter lifetimes than normal stars of the same mass, while products between low mass stars are long-lived and look very much like normal stars of their mass. Mass transfer can result in a merger, or can produce another binary system with a blue straggler and the remnant of the original primary. The products of binary mass transfer cover a larger portion of the colour-magnitude diagram than collision products for two reasons: there are more possible configurations which produce blue stragglers, and there are differing contributions to the blended light of the system. The effects of rotation may be substantial in both collision and merger products, and could result in significant mixing unless angular momentum is lost shortly after the formation event. Surface abundances may provide ways to distinguish between the formation mechanisms, but care must be taking to model the various mixing mechanisms properly before drawing strong conclusions. Avenues for future work are outlined.Comment: Chapter 12, in Ecology of Blue Straggler Stars, H.M.J. Boffin, G. Carraro & G. Beccari (Eds), Astrophysics and Space Science Library, Springe
    corecore