13,005 research outputs found

    Field-Induced Magnetic Order and Simultaneous Lattice Deformation in TlCuCl3

    Full text link
    We report the results of Cu and Cl nuclear magnetic resonance experiments (NMR) and thermal expansion measurements in magnetic fields in the coupled dimer spin system TlCuCl3. We found that the field-induced antiferromagnetic transition as confirmed by the splitting of NMR lines is slightly discontinuous. The abrupt change of the electric field gradient at the Cl sites, as well as the sizable change of the lattice constants, across the phase boundary indicate that the magnetic order is accompanied by simultaneous lattice deformation.Comment: 4 pages, 5 figure

    Fast vectorized algorithm for the Monte Carlo Simulation of the Random Field Ising Model

    Full text link
    An algoritm for the simulation of the 3--dimensional random field Ising model with a binary distribution of the random fields is presented. It uses multi-spin coding and simulates 64 physically different systems simultaneously. On one processor of a Cray YMP it reaches a speed of 184 Million spin updates per second. For smaller field strength we present a version of the algorithm that can perform 242 Million spin updates per second on the same machine.Comment: 13 pp., HLRZ 53/9

    Tight-binding parameters and exchange integrals of Ba_2Cu_3O_4Cl_2

    Full text link
    Band structure calculations for Ba_2Cu_3O_4Cl_2 within the local density approximation (LDA) are presented. The investigated compound is similar to the antiferromagnetic parent compounds of cuprate superconductors but contains additional Cu_B atoms in the planes. Within the LDA, metallic behavior is found with two bands crossing the Fermi surface (FS). These bands are built mainly from Cu 3d_{x^2-y^2} and O 2p_{x,y} orbitals, and a corresponding tight-binding (TB) model has been parameterized. All orbitals can be subdivided in two sets corresponding to the A- and B-subsystems, respectively, the coupling between which is found to be small. To describe the experimentally observed antiferromagnetic insulating state, we propose an extended Hubbard model with the derived TB parameters and local correlation terms characteristic for cuprates. Using the derived parameter set we calculate the exchange integrals for the Cu_3O_4 plane. The results are in quite reasonable agreement with the experimental values for the isostructural compound Sr_2Cu_3O_4Cl_2.Comment: 5 pages (2 tables included), 4 ps-figure

    Ultracoherence and Canonical Transformations

    Get PDF
    The (in)finite dimensional symplectic group of homogeneous canonical transformations is represented on the bosonic Fock space by the action of the group on the ultracoherent vectors, which are generalizations of the coherent states.Comment: 24 page

    Decay of Superconducting and Magnetic Correlations in One- and Two-Dimensional Hubbard Models

    Full text link
    In a general class of one and two dimensional Hubbard models, we prove upper bounds for the two-point correlation functions at finite temperatures for electrons, for electron pairs, and for spins. The upper bounds decay exponentially in one dimension, and with power laws in two dimensions. The bounds rule out the possibility of the corresponding condensation of superconducting electron pairs, and of the corresponding magnetic ordering. Our method is general enough to cover other models such as the t-J model.Comment: LaTeX, 8 pages, no figures. A reference appeared after the publication is adde

    Electronic inhomogeneity in EuO: Possibility of magnetic polaron states

    Full text link
    We have observed the spatial inhomogeneity of the electronic structure of a single-crystalline electron-doped EuO thin film with ferromagnetic ordering by employing infrared magneto-optical imaging with synchrotron radiation. The uniform paramagnetic electronic structure changes to a uniform ferromagnetic structure via an inhomogeneous state with decreasing temperature and increasing magnetic field slightly above the ordering temperature. One possibility of the origin of the inhomogeneity is the appearance of magnetic polaron states.Comment: 4 pages, 3 figure

    Tuning the spin Hamiltonian of NENP by external pressure: a neutron scattering study

    Full text link
    We report an inelastic neutron scattering study of antiferromagnetic spin dynamics in the Haldane chain compound Ni(C2H8N2)2NO2ClO4 (NENP) under external hydrostatic pressure P = 2.5 GPa. At ambient pressure, the magnetic excitations in NENP are dominated by a long-lived triplet mode with a gap which is split by orthorhombic crystalline anisotropy into a lower doublet centered at Δ\Delta_\perp\approx 1.2meV and a singlet at Δ\Delta_\parallel\approx 2.5meV. With pressure we observe appreciable shifts in these levels, which move to Δ(2.5GPa)\Delta_\perp{(2.5GPa)}\approx 1.45 meV and Δ(2.5GPa)\Delta_\parallel(2.5GPa)\approx 2.2meV. The dispersion of these modes in the crystalline c-direction perpendicular to the chain was measured here for the first time, and can be accounted for by an interchain exchange J'_c approximately 3e-4*J which changes only slightly with pressure. Since the average gap value ΔH\Delta_H\approx 1.64 meV remains almost unchanged with P, we conclude that in NENP the application of external pressure does not affect the intrachain coupling J appreciably, but does produce a significant decrease of the single-ion anisotropy constant from D/J = 0.16(2) at ambient pressure to D/J = 0.09(7) at P = 2.5 GPa.Comment: LaTeX file nenp_p.tex, 10 pages, 1 table, 5 figures. Submitted to Phys. Rev.

    The mechanism of hole carrier generation and the nature of pseudogap- and 60K-phases in YBCO

    Full text link
    In the framework of the model assuming the formation of NUC on the pairs of Cu ions in CuO2_{2} plane the mechanism of hole carrier generation is considered and the interpretation of pseudogap and 60 K-phases in YBa2Cu3O6+δYBa_{2}Cu_{3}O_{6+\delta}. is offered. The calculated dependences of hole concentration in YBa2Cu3O6+δYBa_{2}Cu_{3}O_{6+\delta} on doping δ\delta and temperature are found to be in a perfect quantitative agreement with experimental data. As follows from the model the pseudogap has superconducting nature and arises at temperature T>Tc>TcT^{*}>T_{c\infty}>T_{c} in small clusters uniting a number of NUC's due to large fluctuations of NUC occupation. Here TcT_{c\infty} and TcT_{c} are the superconducting transition temperatures of infinite and finite clusters of NUC's, correspondingly. The calculated T(δ)T^{*}(\delta) and Tn(δ)T_{n}(\delta) dependences are in accordance with experiment. The area between T(δ)T^{*}(\delta) and Tn(δ)T_{n}(\delta) corresponds to the area of fluctuations where small clusters fluctuate between superconducting and normal states owing to fluctuations of NUC occupation. The results may serve as important arguments in favor of the proposed model of HTSC.Comment: 12 pages, 7 figure
    corecore