708 research outputs found

    Source File Set Search for Clone-and-Own Reuse Analysis

    Get PDF
    Clone-and-own approach is a natural way of source code reuse for software developers. To assess how known bugs and security vulnerabilities of a cloned component affect an application, developers and security analysts need to identify an original version of the component and understand how the cloned component is different from the original one. Although developers may record the original version information in a version control system and/or directory names, such information is often either unavailable or incomplete. In this research, we propose a code search method that takes as input a set of source files and extracts all the components including similar files from a software ecosystem (i.e., a collection of existing versions of software packages). Our method employs an efficient file similarity computation using b-bit minwise hashing technique. We use an aggregated file similarity for ranking components. To evaluate the effectiveness of this tool, we analyzed 75 cloned components in Firefox and Android source code. The tool took about two hours to report the original components from 10 million files in Debian GNU/Linux packages. Recall of the top-five components in the extracted lists is 0.907, while recall of a baseline using SHA-1 file hash is 0.773, according to the ground truth recorded in the source code repositories.Comment: 14th International Conference on Mining Software Repositorie

    A Robust Formation Control Strategy for Multi-Agent Systems with Uncertainties via Adaptive Gain Robust Controllers

    Get PDF
    This paper deals with a design problem of an adaptive gain robust controller which achieves consensus for multi-agent system (MAS) with uncertainties. In the proposed controller design approach, the relative position between the leader and followers are considered explicitly, and the proposed adaptive gain robust controller consisting of fixed gains and variable ones tuned by time-varying adjustable parameters can reduce the effect of uncertainties. In this paper, we show that sufficient conditions for the existence of the proposed adaptive gain robust controller are reduced to solvability of linear matrix inequalities (LMIs). Finally, the effectiveness of the proposed robust formation control system is verified by simple numerical simulations. A main result of this study is that the proposed adaptive gain robust controller can achieve consensus and formation control giving consideration to relative distance in spite of uncertainties
    corecore