5 research outputs found

    Challenges associated with modeling low-oxygen waters in Chesapeake Bay: a multiple model comparison

    Get PDF
    As ecosystem and water quality models are becoming more frequently used for operational forecasts and scenario-based management decisions, it is important to understand the relative strengths and limitations of existing models of varying complexity. To this end, simulations of the Chesapeake Bay from eight threedimensional coupled hydrodynamic-oxygen models have been statistically compared to each other and to two years of historical monitoring data. Results show that although models have difficulty resolving the variables typically thought to be the main drivers of dissolved oxygen variability (stratification, nutrients, and chlorophyll), all eight models have significant skill in reproducing the mean and seasonal variability of surface and bottom dissolved oxygen. In addition, models with constant net respiration rates independent of nutrient supply and temperature reproduced observed dissolved oxygen levels about as well as much more complex, nutrient-dependent biogeochemical models. This finding has significant ramifications for short-term hypoxia forecasts, which may be possible with very simple oxygen parameterizations. Chesapeake Bay observations indicate a stronger correlation between the depths of the top of the halocline and the oxycline than between their magnitudes, highlighting that the depth of stratification compresses livable habitat when low-oxygen conditions are present. Furthermore, this implies that improvement in hypoxia simulations will depend more on the ability of models to reproduce the correct mean and variability of the depth of stratification than the precise magnitude of stratification. This study also provides an example of how multiple community models can be used together to improve management decisions based on regulatory model results

    Extent and Causes of Chesapeake Bay Warming

    Get PDF
    Coastal environments such as the Chesapeake Bay have long been impacted by eutrophication stressors resulting from human activities, and these impacts are now being compounded by global warming trends. However, there are few studies documenting long-term estuarine temperature change and the relative contributions of rivers, the atmosphere, and the ocean. In this study, Chesapeake Bay warming, since 1985, is quantified using a combination of cruise observations and model outputs, and the relative contributions to that warming are estimated via numerical sensitivity experiments with a watershed–estuarine modeling system. Throughout the Bay’s main stem, similar warming rates are found at the surface and bottom between the late 1980s and late 2010s (0.02 +/- 0.02C/year, mean +/- 1 standard error), with elevated summer rates (0.04 +/- 0.01C/year) and lower rates of winter warming (0.01 +/- 0.01C/year). Most (~85%) of this estuarine warming is driven by atmospheric effects. The secondary influence of ocean warming increases with proximity to the Bay mouth, where it accounts for more than half of summer warming in bottom waters. Sea level rise has slightly reduced summer warming, and the influence of riverine warming has been limited to the heads of tidal tributaries. Future rates of warming in Chesapeake Bay will depend not only on global atmospheric trends, but also on regional circulation patterns in mid-Atlantic waters, which are currently warming faster than the atmosphere. Supporting model data available at: https://doi.org/10.25773/c774-a36

    Colorectal cancer, one entity or three*

    No full text
    Understanding of the mechanism of colorectal carcinogenesis has been gaining momentum for some years on account of its high incidence and impact on the lives of individuals affected. Different genetic abnormalities have been found in colorectal cancers from different sites. For example, proximal colon cancer is usually related to the nucleotide instability pathway, as microsatellite instability (MSI). However, distal colon cancer is usually associated with specific chromosomal instability (CIN). The development of cancer at the rectum, though similar to that at the colon, displays its own unique features. These differences might be partially attributed to different embryological development and physiological circumstances. Environmental factors such as diet and alcohol intake also differ in their role in the development of tumors in the three segments, proximal colon, distal colon, and rectum. “Proximal shift” of colon cancer has been known for some time, and survival rates of colorectal cancer are higher when rectal cancers are excluded, both of which emphasize the three different segments of colorectal cancer and their different properties. Meanwhile, colonic and rectal cancers are distinctive therapeutic entities. The concept of three entities of colorectal cancer may be important in designing clinical trails or therapeutic strategies. However, the dispute about the inconsistency of data concerning the site-specific mechanism of colorectal carcinoma does exist, and more evidence about molecular events of carcinogenesis and targeted therapy needs to be collected to definitely confirm the conception
    corecore