32 research outputs found

    Model-Based Fusion of Multi-Modal Volumetric Images: Application to Transcatheter Valve Procedures

    Get PDF
    Abstract. Minimal invasive procedures such as transcatheter valve interventions are substituting conventional surgical techniques. Thus, novel operating rooms have been designed to augment traditional surgical equipment with advanced imaging systems to guide the procedures. We propose a novel method to fuse pre-operative and intra-operative information by jointly estimating anatomical models from multiple image modalities. Thereby high-quality patient-specific models are integrated into the imaging environment of operating rooms to guide cardiac interventions. Robust and fast machine learning techniques are utilized to guide the estimation process. Our method integrates both the redundant and complementary multimodal information to achieve a comprehensive modeling and simultaneously reduce the estimation uncertainty. Experiments performed on 28 patients with pairs of multimodal volumetric data are used to demonstrate high quality intra-operative patient-specific modeling of the aortic valve with a precision of 1.09mm in TEE and 1.73mm in 3D C-arm CT. Within a processing time of 10 seconds we additionally obtain model sensitive mapping between the pre-and intraoperative images

    Robust Motion Estimation Using Trajectory Spectrum Learning: Application to Aortic and Mitral Valve Modeling from 4D TEE

    No full text
    In this paper we propose a robust and efficient approach to localizing and estimating the motion of non-rigid and articulated objects using marginal trajectory spectrum learning. Detecting the motion directly in the Euclidean space is often found difficult to guarantee a smooth and accurate result and might be affected by drifting. These issues, however, can be addressed effectively by formulating the motion estimation problem as spectrum detection in the trajectory space. The full trajectory space can be decomposed into orthogonal subspaces defined by generic bases, such as the Discrete Fourier Transform (DFT). The obtained representation is shown to be compact, facilitating efficient learning and optimization in its marginal spaces. In the training stage, local features are extended in the temporal domain to integrate the time coherence constraint and selected via boosting to form strong classifiers. An incremental optimization is performed in sparse marginal spaces learned from the training data. To maximize efficiency and robustness we constrain the search based on clusters of hypotheses defined in each subspace. Experiments demonstrate the performance of the proposed method on articulated motion estimation of aortic and mitral valves from ultrasound data. Our method is evaluated on 65 4D TEE sequences (1516 volumes) with the accuracy in the range of the inter-user variability of expert users. It provides in less than 60 seconds with an precision of 1.36 ± 0.32mm a personalized 4D model of aortic and mitral valves crucial for the clinical workflow. 1

    Objective Function

    No full text
    � Significant morbidity and mortality rate
    corecore